-

NNASA © 7

National Aeronautics an;d NASA CR-188269
Space Administration

Lyndon B. Johnson Space Center
Houston, Texas 77058

SPACE GENERIC OPEN AVIONICS ARCHITECTURE
(SGOAA)
STANDARD SPECIFICATION

N94&=-22275
Unclas

December1993

Richard B. Wray
John R. Stovall

86 p

(This revision supersedes LESC-30354-A, issued March 1993)

{Lockheed

SPACE GENERIC

Prepared by:

Lockheed Engineering & Sciences Company
Houston, Texas

Job Order 60-911
Contract NAS 9-17900

OPEN AVIONICS ARCHITECTURE (SGOAA)

STANDARD SPECIFICATION
Engineering and Sciences Co.)

(NASA-CR-188269)

for

FLIGHT DATA SYSTEMS DIVISION
JOHNSON SPACE GCENTER

LESC-30354-B

G3/19 0203331

Ny, ™

SPACE GENERIC OPEN AVIONICS ARCHITECTURE
(SGOAA)
STANDARD SPECIFICATION

December 1993

Richard B. Wray, Advanced Systems Engineering Specialist
John R. Stovall, Advanced Systems Engineering Specialist

APPROVED BY:

-~

— 4 - o) M-‘Lb‘
G.L. Clouette, Project ln@zﬂ Specialist D.M. Pruett, Manager, Advanced Programs
t

Flight Data Systems Departm Flight Data Systems Division

Prepared by:

Lockheed Engineering & Sciences Company
Houston, Texas

Job Order 60-911
Contract NAS 9-17900

for
FLIGHT DATA SYSTEMS DIVISION
JOHNSON SPACE CENTER

LESC-30354-B

DOCUMENT CHANGE RECORD

The following table summarizes the change activity associated with this document.

ISSUE AND CHANGE SUMMARY SECTION
DATE

PRECEOING FAGE BLANK NOT FU.MED

OAGE L INTENTIORALLY pLiRK i

PREFACE

This document has been produced by Mr. Richard B. Wray and Mr. John R. Stovall of
Lockheed Engineering and Sciences Company (LESC), the codevelopers of the avionics
architectures and standards represented in this document. The contributions of Mr. Ben
Doeckel of LESC who participated in early development of the concepts for the avionics
architectures and standards represented in this document is acknowledged. Special
acknowledgment is also given to Mr. Dave Pruett of the Johnson Space Center for his
support of the Advanced Architecture Analysis, assistance in the development of the
avionics architecture and constructive criticisms of the proposed standard.

CONTENTS

Section Page
1. INTRODUCTION ... rreesreeeseseen seesssstsstsesssissesasssssssneamsarsesssssessessassaassas sesesss 1-1
11 SCOPE...ooiouormreusreeseessssessssssssssssesssssssssrsssssssessessssssessssssasesesecsmsesssssssssssnssessessssssssassssass 1-1
1.2 PURPOSE.......ooeerevrirresemressesmssssnessmsesssasssssesmsssssssesassssstonssssssassvssasssssssssssssassssensanses 1-1
13 APPLICATION GUIDANCE.....cccoirrriertienninseieeisesseressesessmsnsssnessssassesssessnens 1-1
14 BACKGROUND......ccmrrrriremrerrnrersenssssnessisisasssnisessessiissrsssssmsassesaessesssssmmsesssssassanss 1-2
2. APPLICABLE DOCUMENTS ...t scseistissssssssmssssrsssssassmssessssssssnsssne 2-1
21 STANDARDS......oorrrrereeerreresesme e sesentrenes e ssesssassssesessestasassssssesensassensnesesssnssens 2.-1
22 SPECIFICATIONS.......cccererermrerrstssssessssessisssssnssesasersssssessesssnsserssnssassrenssssamanssnesnss 2-1
2.2.1 GOVERNMENT SPECIFICATIONS........onvrvcmrevenceinriineenenens 2-1
222 CONTRACTOR SPECIFICATIONS........ccooniricmnnrenenncesneiansnesens 21
23 OTHER PUBLICATIONSovorrrurmrmeresesssersssersseesessessssesssessermsmsenssessssssncrssenssessses 2-1
3. DEFINITIONScovrtreereimssssrssssesssssssassssssssssssnessssasssssssessssasssssessessassessssssssasensasessscssssese 31
3.1 APPLICATION ..o ceceririrresessessnsrsesersssssraessssssnsssssansnsssnssesssonsensasesssersssesaronorsasns 31
32 APPLICATION PLATFORMccccumnrressmrrnerrenmsaseesenessmssemssrassesssesseesensssssssnnens 31
33 APPLICATION PROGRAM INTERFACE......cccommcnirniennesenssessessasnenes 31
34 APPLICATION SOFTWAREcooocrrremmriricnimnnscrsesr e snsnsecsmesssnseseessensressessenees 31
35 ARCHITECTURE......ccccocvrrersrrrrsmrrreresseermseesstssssssssnssssssssessesssessmsssas sessessenssesseses 3H
36 AVAILABILITY ..ooocvrereeeesessssssssrsssssssssnsssssmssssmssssseesssessssssasesssossssssssssesssssessssesssssases 31
3.7 AVIONICS SYSTEM ...covovrertrrrereremsmressrsnssesmesscsussssssesessesaessssssesesassmesssnessnerassessess 32
38 COMMUNICATION INTERFACE ..o seeenssnnssssesesramesnssesesnennes 32
3.9 COMPONENTcooccirerrrsrerers e e esessesrssessessesessersesssessssssssesssssesissesssassssvasensssens srase 32
3.10 CONTINUITY.oommmrreusrressersssessressesssssmessssssssssssseessessssesssesussessssssssessssesssressssessesss 32
3.11 CONTROL SYSTEM.....occorirerermrnnmrinmrersmsesssessssesssesnssessasseessessess Ceremasnrenseransessase 32
3.12 CORE AVIONICScocoerererrserserrenesmssmssrensnsenesessssastssassensassessissessssmerssosessssnesess 33

Section Page
313 DATA oottt sr s s s s et s e b b s s st s s s e r e e e e e e s e s 33
3.14 DATA BASE MANAGER....ceniniiiissmsiimman st s ssssssssessssssssnees 33
3.15 DATA PROCESSING SYSTEM.......cmmmmmrserssesssssessessssessecssssmmssssssemmmmmasssssssssessess 33
3.16 DATA SYSTEM....ocvvrvrnreenesiesisminisesmsemessnsssssimsssssssssssesissssasserssssssassssssasssenes 33
3.17 DATA SYSTEM SERVICES.....cccooimirnninmnrisisnsnissnsinesis e s 33
3.18 DATA SYSTEM MANAGERccocnmmmmmmnmimninessinnsessrssassesssesesssssssssssssnas 34
3.19 DECOMPOSABILITY ...ccoeervnisrrrmremssssessmsscsesnssessassesssnssssssssassssssssessssssasassassnsassssnasss 34
320 DEGRADED MODE........ovcooossesmmmmmsmsmssnsssssssssssssrssssssssssssssessssssssssssasensssessesassreseesses 34
3.21 DEPENDABILITY .oecconrrcrerirescsrisisesssssesnsssnsassrssssssssssmnismonsnssssssssssssnissesassosnsansseseens 34
3.22 DIRECT INTERFACE ..o e 34
3.23 DISTRIBUTED SYSTEM .ciovercrsvmmrmrisanasnimmsmsnssnnsnnenessminesns erersessesassnssasensonenas 35
324 END-USER ..ot cciicireerrerreineseresssesmrssssesssssesscsssssssstsrsssasrsssssssrsssssessssssvsessssessrassssssavsses 35
325 ENTITY .oovevrererrrrresrernssessssesmsmssessenessessssssasssssesessssmasssesestsssassssssss ssasssasassassaseansesssssnsans 3-5
3.26 ERROR ...oocierirrverrvsrersvssssecrarsessarsssnsssrsssssssssssssssssssessissessisasssssessssassasssssgsssssnssnsnsesssssenes 35
3.27 ERROR PROCESSINGccorurverersirerersersesassessasassaressasssssssesssesssnssnsssssesessessssssnssessss 35
328 EXTERNAL ENVIRONMENT ...cccvvrurcsiriarnsussmsiesssmnsssssssersssasssssasnssssssrsssssssesecscss 35
329 EXTERNAL ENVIRONMENT INTERFACE.....c.ccmmmummnumsmssenseressecsersevesssenses 36
3.30 EXTENSIBILITY ...ccocetrummensnerseresssasssssesssscssssssssssnsssssssrassrescsnsassssnsassnsssasssassssassnsanses 36
3.31 FAILURE ...oovrerrenrctscnnrenismeessssessssessssassessenssnesassssassesnssssssnss senssssssssssssssnsnsssessssesaessse 3-6

© 8332 FAULT oot ssssssssssssssssssossssssssssssssmssssssssssssassssss s 36
3.33 FAULT TOLERANCE......ccciievmecnmresseneiiisistsssissmsssisesssnsssssssens s sssvssssesasenes 36
3.34 FAULT TREATMENT ...cccsieerrrmmissmsnenismmsissmsssssssrssesssssmssesessssassssessssnssosss 36
3.35 FLIGHT CRITICAL FUNCTION/INTERFACE.....ccoirecrersmrecscnnrnsssreensnse 37
3.36 FUNCTION.....coveriereremmsmenessesssssistsasasassesmmsssisisssssssssmsssessessarassssssssssssasessesssasssseseas 37
3.37 GENERIC ARCHITECTURE.....ccooossrrmsumsrrmmrsssrmeseassssescrmmitssssssstmssssmressunysssisssssseesess 37

Section Page
3.33 HUMAN/COMPUTER INTERFACE.......cccmrrirricmeimmninnnenenesssssnn. 37
3.39 INTERFACE. ... errenrresnnssssessnsrnssnsassessstssansssssssassessessasamsaneses revrsarsanensestine 37
3.40 INTEROPERABILITY.ccovtemseerssersmssesoressecsmmsesssecrssessmsessessesesssesssessssessrsssesssssanse 37
3.41 LOGICAL INTERFACEccoovimeeenrrertnrecisstsisnisermssss s ssssesessasassmsesassassassnses 38
3.42 MISSION CRITICAL FUNCTION/INTERFACE.....ccminiisnsnraesesassnees 3-8
3.43 MISSION READY MODE......ccvvrirenmnereeseimennsnsesacsessesness S 3-8
344 MODEoovveemeeunnsssinsssssssssmsssssssssssssssssssssssssssessasassmssssssessssasesasss sssssssssesssseassssssssenss 38
3.45 MODULAR ARCHITECTURE.....ccccsirrmrrentressssinesssssssssmssssmssessssesesesecsmssssssnens 38
3.46 NETWORK SERVICES MANAGER.....cocvvrvrmmrrnminiseestiniesmsnecseerssseecsessessessanses 39

5 BT OBIECToveeverreeessssresessesssssssssssessssessaseessssssssesssssessasecssresssssscsssssasesssssessessasessasesesress 39
3.48 ONBOARD HEALTH MANAGEMENT ..ot e saennnanens 39
3.49 OPEN FORUM......ccouvirrmrrurensrereens RN 39
3.50 OPEN SPECIFICATIONcccrmeerrmsmssncsnsmssisesmnssssisnssssstssesasssaesessssessonssarsssssssasans 39
3.51 OPEN SYSTEMooorirererccremnrsmnsessseesssssessssesssrevsessssssssssesssosessssossassssasssssssossnsasss 39
3.52 QOPEN SYSTEM INTERFACE STANDARDS.......ccccoerinrirerninrereenisanssansanans 3-10
3.53 OPEN SYSTEM APPLICATION PROGRAM INTERFACE........ccccvnirnnnene. 3-10
3.54 QOPEN SYSTEMS ARCHITECTURE.......ccsvcueesermsemssmasesseneessesssssesssesssssssmesserssens 3-10
3.55 OPEN SYSTEM ENVIRONMENT.......ccciomrmmrerimermsmmmmsesnmmesssessmssmsssssasene 3-10
3.56 QPERATING SYSTEM ...oocicrtreernrreesreeensennesessesseessnssssessssassssssssssnsasssensessssessss 3-10

- 3.57 QOPERATIONALLY READY MODE........ccccnrmrnrrrrrmninnnesresnnsneensessesessiasesessnnne 3-11
3.58 PLATFORM.....o.evuirirrieeeemserrsssssssrssssssssnssssssssssssssssssssssssssssssessssssssssssssesssesssnsnssssseesss 3-11
3.59 PORTABILITY ..oeooeceerverrnenreresnnseererseesssrsssrsossssenssessessssssssessssssenesessesssssssssonssmassnssnse 3-11
3.60 PROTABILITY ..o srrermememsesssessssassssssesesssessassssssssassssonsssssssssessanssesasasas 3-11
3.61 PROTECTIONoovuvuueresererrerssrmrsssessssrssssssssssssssssssesssmssssssessssssssesssssssssessassssesssss 3-11
3.62 RED-TAGGED MODE.....cccossrimmiesmremsiassssssssssssmssssssssrsssssssssssesssssssssssssssssssesses 3-11

vii

Section Page
363 RELIABILITY . ooovoeeersessseesssmsssssssssssssssssssssesssssssssstsossesssssssssssessssssssssasssssssns 3-11
3.64 REQUIREMENTS ARCHITECTURE .vvoovecrevrssmssssssemsssessesssssssssssssssssssssssssoses 312
365 ROBUSTNESS.occcsrummsssssssssmssssssmssessssmssesesssssssssesssssesses SRR % V.
3.66 SAFETY CRITICAL FUNCTION....coorrossimmrermsemssssesssimsessssmssssesssssssssssssssssenees 312
3.67 SERVICE crooeeveeosoersesssseresssssrssssssssssssssssssssssssssessssssmsssseasssssesssssssssssessssssssssses 3-12
3.68 SERVICE SUBSYSTEM...cooovreosrecccmrmessssssssssesssnsesssssssesssssmsssssssssssssssssoessessssssees 3-12
3.69 SOFTWAREoovvsommeeresssmesssessmsssssssssessessmsssssssssssssssossmssssasssssssssesssismssssssssesees 3-12
370 SOURCE reveerresssreeressssnsesssiseseessssmssssssssssses s sssssssssssess s smssseresssssssseesmssssssesenes 312
3.71 SPACE DATA SYSTEM.......o.... e e s e e e 312
372 SPACE DATA SYSTEM SERVICES (SDSS) cccrrrressuesssssssssssesssss I 313
3.73 SPACE GENERIC OPEN AVIONICS ARCHITECTURE (SGOAA) ..oocevonen. 313
374 INPUT/QUTPUT DATA SERVICES MANAGERooocoserrmsssssssssrsssssssrassne 313
375 STANDARD ...ooceeosseeerosrsesssesesssssssssssssssssssssessssessssssessssesssssesssssssssessessssses 3-13
3.76 STANDARDIZED PROFILEoooossoeerssssmssressssssssesssemsssssssssessssssssssssesssssssesssses 3-13
377 SYSTEM eeorresecmeeesssmesersssmmesesestessossssmssssssssssssesssssssssssssesssssssssssssssssssssssssssssss 313
378 SYSTEM HARDWARE ARCHITECTURE....vvveosssusessersssmssssserssessssssssssssssssese 3-14
379 SYSTEM SOFTWARE ARCHITECTURE...cocevrssssssssssssssrsesssssssssssssssmesnssseces 3-14
3.80 SYSTEM SERVICES SOFTWAREccoccmmuuusressisssssssmmsssessssssssssssssssssssesesssnees 3-14
B8] TASK eroreeereesceeeessesesssssssmsssssossessssssssmssssessssssesssssssssessmsss s s ssssssssssssssss 3-14
3.82 UNDERSTANDABILITY ...ooovoovommeeseessssmsssssesssissssesssssssssssosssssasmssssssssesassssssesee 3-14
3.83 USER evvrevrsssessessssssssssssssesss st oo s s s e 3-14

4 GENERAL REQUIREMENTS....coovoomsvsnsesmssssmsmsssosssssssssssssosssesssssssssssssssssssssssssssssss 41
41 OPEN SYSTEMS REQUIREMENTS cevvvvverernrresesesssmsssssessssssssssssssssssesssssssseen 41
42 LOWER LEVEL STANDARDS SELECTIONoovmeesrsessmmsessessesssssrssssssessss 41

viii

Section

43 ARCHITECTURE FEATURESccoomureerssmmreessssssmsseesssssssmssssssessssessssssssssssne 43
431 REQUIREMENTS ARCHITECTURE ..oooooerrossmrsssssssssssesssssssssesssseees 43
432 CRITICAL INTERFACES ..oovvvvmmermsssmsessesssmsessssrsessssssssssssesssssssssssssseses 43
433 NON-CRITICAL INTERFACES .oooseesssssessessessnes 44
434 RESOURCE CONTROL...oovvomeeererssimsssessmessmssssssssssmssssesssssssssssssssssssses 44
435 COMMONALITY....oommreoovsersessssssessssssesessssmsssesssssssesssmsssssssssssssssesssseees 44
436 INTERFACE STANDARDIZATION ...oooreersmrsmrmsressrsssmssssssssses 44
437 CREW OVERRIDE....o.vroosoeessetremsssssesesssssssssesessssss s 44
* 438 ONBOARD HEALTH MANAGER......ooosssseererresssssmssosssssssssssssssssssseees 45
439 DATA SYSTEM SERVICES oo £6
4310 GROWTH AND SPARE CAPACITY ...ooovvoerrmsssmessrsssssssssssesssessessess 46
4311 MODULARITY .coovvocovmreereessssreeresessssmssssesssssssesessesssmsssssesesessssmssssssessssses 46
43.12 SERVICE TRANSPARENCY ..ccvvvrorercrrossmersssmesssesssssssssssseremssssssessses 46
43.13 TECHNOLOGY TRANSPARENCY......oocoormrereersssmsssssssssssssssssssssssssssen 46
4314 INTEROPERABILITY w.ooveeoosvoeereseossreesesossmessssmssesssssmssssssssssessssseessasenen 46
4315 DEPENDABILITY ...oorvooroceerssseeesssssssesssssssessssmessssssssssssssssssassmsosesssses 46
43151 AVALIABINEY .ccovoeevoreessressseeessmseesssssessssessssssssssesssssssssssssssess 47
43152 REUADIIEY covvveeeerrressesssssssssssssssssssesssssssssssssssssssssssssssssssnsessesessnes 47
83153 SAEELY ooveorerrseresssessssreesms s ssmsesssssssssesssssss s ssssssessese 47
83154 SECUTILY corvvoersrernerssessssessssessssessssssesssssssssessssesssse s sseses 47
5. ARCHITECTURE INTERFACE DETAILED REQUIREMENTS........ccococermrseserrrre 51
51 SYSTEM ARCHITECTURE REQUIREMENTSooommrressmsermssssssssssssssssseees 51
52 ARCHITECTURE INTERFACE MODEL REQUIREMENTS........ococccrmmeserren 54

521 CLASS 1 - HARDWARE-TO-HARDWARE DIRECT INTERFACE

REQUIREMENTS ...t sesssssssssesasassmsesssssssssssnssssas 57

Section

522

523

524

525

5.2.6

5.2.1.1 [nterface ArchiteCture.....cuvrnnsnrimsrarcsinsmsmseseessssesse. 37
5.2.1.2 Generic Processing External Hardware Architecture 59
5.2.1.3 General Avionics Processor Internal Hardware

ATCHITECHUTE.cevervecrirmcsrctne ettt 5-12
CLASS 2 - HARDWARE-TO-OPERATING SYSTEM EXTENSION
SOFTWARE DIRECT INTERFACE REQUIREMENTS...................... 5-14
5.22.1 Error Processing ... 5-14
5.2.2.2 System Services SOftWare......curvnerimvemrensmeremersseseseersssseneen, 5-16
5.22.3 Hardware Operating System Extension Interfaces.............. 5-16
CLASS 3 - OPERATING SYSTEM SERVICES SOFTWARE-TO-
SOFTWARE (LOCAL) DIRECT INTERFACE REQUIREMENTS.....5-16
5.23.1 Local Software Service Grouping......c.cecoevvermereresneeresesnnnennne 5-16
5232 lass 3 Flight Safety and Mission Critical Interfaces........... 5-19
5233 (lass 3 Operating System Interface e 5-19
CLASS 4 - DATA SYSTEM SERVICES SOFTWARE-TO-DATA

SYSTEM SERVICES SOFTWARE LOGICAL INTERFACE

REQUIREMENTScoiinininnitniminniesisensmsmscssmsssessssstsssesessssssessasessasasens 5-19
5.24.1 Class 4 Critical Function Error Processing........cooveveueucurenune 5-22
5.24.2 (lass 4 Data System Services Interfaces..........coveerveecveenrene. 5-22

CLASS 5 - DATA SYSTEM SERVICES SOFTWARE-TO-
APPLICATIONS SOFTWARE (LOCAL) DIRECT INTERFACE

REQUIREMENTS. ... ssescsensssasmsesssmaesesssessssasens 522
5.2.5.1 Class 5 Error Processing.......ceeveurmcenussssmmersesveessessessnsnssessnnsens 5-22
5.2.5.2 Services to Applications Interfaces.........ccoorermervesseserensrusenes 5-25
CLASS 6 - APPLICATIONS SOFTWARE-TO-APPLICATIONS
SOFTWARE (LOGICAL) INTERFACE REQUIREMENTS................ 5-25
5.2.6.1 Class 6 Error Processing.....omumiinmmmsmmrmmmssssssenns. 5-25
5.2.6.2 Applications to Applications Interfaces..........ccorevnrsnsrrenas 5-25

Section Page
53 DATA SYSTEM SERVICE ARCHITECTURAL REQUIREMENTS............. 5-28
5.3.1 INPUT/OUTPUT DATA SERVICES MANAGEMENT.......cccocovvuene 5-28
532 DATA SYSTEM MANAGEMENT.......ccierirniimnnrcsnessenecensne e 5-32
533 NETWORK SERVICES MANAGEMENT........cccvvmmmveniimennirrecnrenns 5-32
534 DATA BASE MANAGEMENT ... saencneneenenne 5-32
5.3.5 OPERATING SYSTEMcovrrvrremmnrcrnicrncsnenssnssessssssssessssessesassesessrases 5-32
6. INOTES ...t strs e nerere e sae s sy s e nssresssrasssseese s sssesassoR T Sn SRR Be SRR e RS sESRE R SR SRR B BE SRS 8 6-1
6.1 AVIONICS SYSTEM NOTESoccomrrermreeerrreeerreesreernnesesssesrssessssessrecssssssssensess 6-1
6.1.1 AVIONICS GENERALcovrrtirrcerctmrreniinnnssnnnininisesssesssnissssisesssssnes 6-1
6.1.2 MODES ... 6-1
6.1.3 ARCHITECTURE INTERFACE MODEL......cccoovmirinrermnenrsermrsesenns 6-1
62 REQUIREMENTS NOTES.....orirrrererrerreceseressscsersnsessresssaresssssssssorsssssesssenes 6-1
6.2.1 DATA PROCESSING SUBSYSTEMccvcenrvenrrmnnrmsinnesnsaressssnssnsassnsssoses 6-1
6.2.2 INTERSYSTEM APPLICATIONS INTERFACE......ccccoovmmrreersencsons 6-3
6.2.3 CONTROL SUBSYSTEM ...coooirirriinrieenrinnemessensresssnsnmssssmsssesnssessesasessessses 6-3
6.24 MODULAR ARCHITECTURE.......ooccveemrrmceencrerrsnnsesesssssnseeseassesesessnsesases 6-3
6.25 DIRECT INTERFACE.......ciiirrrressneenesneererssessrssrssnsssssessessessessessans 6-3
63 REQUIREMENTS CHARACTERISTICS DESIRED.......coccoveerenennrusmserencsisennne 63
6.3.1 ROBUSTNESS........coocevvrrmrmrrrarrsssssssssssesssssssesssesssssassonsssasssrssssessassssessassans 63
6.3.2 SYSTEM SERVICES SOFTWARE.......co e reeenrenesesesmsannnneen 63
6.3.3 SERVICE FUNCTIONS......oeetrerreereneremiest e st snrssssessessssesssssssesassees 64
6.3.4 TAILORING........ccommmmmmmmmmmssmmmmssssnssss s ssssssssssssasssssssssssee 64
6.3.5 SYSTEM CHARACTERISTICS.........ccconmmmninnrnsi e 64
6.3.6 ONBOARD HEALTH MANAGEMENT ... e 64

Xi

Section

6.4

6.5

6.6

6.7
6.8
69

ARCHITECTURAL CHARACTERISTICS DESIRED ...cvvoevvsersssssesssrseersees 65
641 SYSTEM SOFTWARE ARCHITECTURE .vvuvomsmsmrmssmssssssssssssesee 65
642 APPLICATION PLATFORM cooocooersossssssssnsssesmsessssssssssssssssssssee 65
6.43 APPLICATION PROGRAM INTERFACE m.nueossssmssssssssssssssssssses 65
644 ARCHITECTURE LOCATION INDEPENDENCE...covvrvrmmrsssnsene 65
645 FAULT TOLERANCE TRANSPARENCY ..ooomimrosssssissssssssmssnee 65
646 ADAPTABLE REDUNDANCY ...oocoommrmmmrsmmssmmssssssssssssssssssssssessns 65
DIRECT AND LOGICAL INTERFACE NOTES....occoomrerrermsssessssssssssssssrsess: 66
651 CLASS 2 DIRECT INTERFACE....ccosmessermmmemmssmssssssesssssssssssssssessoce 66
652 HEALTH MANAGEMENT INTERFACE cvoomeemsessmsssssssssssssees 66
653 CLASS 4 LOGICAL INTERFACE......ccomusiimrirmssissssssesssssmsssssssssaee 66
6.54 CLASS 5 DIRECT INTERFACES. ...ooocmvosmsrsmessssssssssesisssssssssssssses 66
655 CLASS 6 LOGICAL INTERFACES ..vvrsvrrersrrssssessssssessenes R 67
IMPLEMENTATION CHARACTERISTICS ...occovsrrsrsssssssssssesssssseseeseee 67
661 ARCHITECTURE SCALEABILITY....occoonmmrmmmmmerssrrssssssssssssssssssseees 67
6.62 ARCHITECTURE RECURSIVENESS....ocoooommssssssssssersessesessserseseeees 67
663 ARCHITECTURE TARGET DEVELOPMENT ..cooocuomermsmrserserssse 69
TERMINOLOGY NOTES ...oevecevssresrsoeesssessiesssssasssmsesssemsssssssssssssssssssssess 69
PURPOSE OF PROFILESccecreeesrsssssssrs s sesssssssssssssssseesessessens 6-12
BIBLIOGRAPHY OF USEFUL DOCUMENTS ...ooccmerssrrsssseresrssessssessseesen 6-12

it

~_

Table
5-1

Architectural Interface Classes

TABLES

Xiii

Figure Page
41 SGOAA Functional INterfaces........imimmsnssmemiessese e s 42
51 Logical System Requirements Flowdown to Direct Design Requirements.......... 52
52 System ArChiteCtUIe .t s s sesaees 5-3
53 Reference Architecture Interface Model....oeieericiiinisiiiniiinncnnnnnninen. 55
54 Class 1 Hardware to Hardware Direct Interfaces........ccuuenenensinievcnivvcmevcenecencecnen. 58
55 Generic Processing External Hardware Architecture and Interfaces for a

Space Generic Open Avionics ArchiteCture ... 5-10
56 Generic Processing Internal Hardware Architecture ... 5-13
57 Class 2 Hardware-to-System Software Direct Interfaces......ccocoouvcseniiviinccssirnnnnennne. 5-15
58 GAP to Hardware DIIVErS.....conumemnsiiininssmsnssssssnistssssssssissssssssinsssese s 5-17
59 Class 3 System Software-to-System Software Direct Interfacescoovuevivevvsriens 5-18
5-10 Operating System INterfaces. ... 5-20
5-11 Class 4 System Software-to-System Software Logical Interfacesccovveuvevernnen. 5-21
5-12 SDSS Services to Other or Remote Services......ornnnmeseinsnsesinesnsesienn. 5-23
5-13 Class 5 System Software-to-Applications Software Direct Interfacesc...cccoou.... 5-24
5-14 Services to Applications INterfaces.......erecrmccsssisininivmnseisiene s sasssenssss s 5-26
5-15 Class 6 Applications Software-to-Applications Software Logical Interfaces.......... 5-27
5-16 Class 6 System A Software-to-System B Software Logical Interfaces......cccevuueneen. 5-29
5-17 Data System Services Architectural Interface Elements.............. SRR 5-30
5-18 Interface Service EIEMENLS ...cvvirvriienrnriiniinsness s st sessescos 5-31
6-1 Generic Avionics Architecture Interface Model......covvvveccvinininincnniensnnnnnene. 62
62 The Generic System Architecture Model is Scaleableouumimrmirsiriirineennen. 6-8
63 The Generic Architecture Interface Model is Recursive.........cccevcinminncnninininnens 6-10
64 The Interface Model Applies to Both Target and Host Development

ENVITONIMENEScrvrrarerreescetssesesssescsssorssssossssssensasssasassssessssssssssmonsasssetsssnsasssnsasasassnsassnssosss 6-11

FIGURES

Xiv

~

API

BIT
BITE

C&T

EEI
EIA

FB+
FDDI

GAP
GN&C

I/O
ISA
IOSM

JsC
LESC

NSM

OSE
OSI

POSIX

RTE

ACRONYMS

Application Platform
Application Program Interface

Built-In-Test
Built-In-Test Equipment

Communications and Tracking

External Environment

External Environment Interface
Electronics Industries Association
Embedded Processor

Future Bus Plus
Fiber Data Distribution Interface

General Avionics Processor

Guidance, Navigation and Control

Input/Output
Instruction Set Architecture
Input/Output Data Services Manager

Johnson Space Center
Lockheed Engineering & Sciences Company
Network Services Manager

Operating System
Open System Environment
Open Systems Interconnect

Portable Operating System Interface

Run Time Environment

XV

SAP
SDS
SDSS
SGOAA

Special Avionics Processor

Space Data System

Space Data System Services

Space Generic Open Avionics Architecture

—

o -

1. INTRODUCTION

1.1 SCOPE

This standard establishes a Space Generic Open Avionics Architecture (SGOAA) interface
model and the requirements for applying this model to the development of spacecraft core
avionics systems. (This version of the SGOAA standard primarily addresses the general
avionics processors and their interfaces. Internal interfaces for special avionics processors
and embedded processors require further definition.)

1.2 PURPOSE

The purpose of this standard is to provide an umbrella set of requirements for applying the
generic architecture interface model to the design of a specific avionics hardware/software
system. This standard defines a generic set of system interface points to facilitate
identification of critical interfaces and establishes the requirements for applying appropriate
low level detailed implementation standards to those interfaces points. The generic core
avionics system and processing architecture models provided herein are robustly tailorable
to specific system applications and provide a platform upon which the interface model is to
be applied.

1.3 APPLICATION GUIDANCE

This standard is intended to be used by both avionics system designers and avionics system
implementors in the development of open systems architectures for avionics. The system
under design shall be expressed in the context of the System Architecture and Generic
Processing Architecture as defined in Sections 5.1 and 5.2.1.2 respectively of this standard.
The Architecture Interface Model shall be directly applied to identify the specific interfaces
requiring application of lower level standards. The selection of specific lower level
standards is dependent upon unique system requirements, but shall be conducted in
accordance with the guidelines provided in Section 4.2.

This architecture is scaleable and recursive, and can be applied to any hierarchical level of

hardware/software processing system, as discussed in Section 6.6.

1.4 BACKGROUND
Development of a SGOAA that satisfies the Portable Operating System Interface (POSIX)
reference model [POSIX91], the Open System Interconnect (OSI) reference model [ISO7498]
and the definition of an open system architecture was initiated to aid in providing the
following benefits to future space programs:
® Provide the basis for establishing a set of specifications, standards and procedures
that will become common to all systems used in simultaneously operational
missions, e.g., to simplify interfaces between multiple vehicles (such as the

shuttle and station) when performing a joint mission such as docking.

® Ensure that future avionics systems can be upgraded and maintained with
minimal redesign impact to the existing avionics system by establishing the
interfaces required to enable modular replacement of hardware and software.

® Promote availability of multiple sources of needed avionics software and

hardware by defining standard interfaces.

® Provide a pool of hardware and software modules for multiple program re-use by
defining standard interfaces and promoting hardware and software reuse and

commonality.
® Insure access to the architecture and its design documentation for any vendor or

agency desiring to propose new uses and applications, and to facilitate
gency g 1o prop PP

competition to contain cost growth.

A complete description of the SGOAA development model, technical considerations and
application examples is contained in the technical guide [WRA93].

\ >4

w

2. APPLICABLE DOCUMENTS

The following documents provide additional supplemental material applicable to this
standard. They provide additional requirements or expand on requirements from this
standard for generic open architectures.

2.1 STANDARDS

[ISO7498] "Information Processing Systems - Open Systems Interconnection - Basic
Reference Model", First Edition, International Standards Organization,
October 1984.

[POSIX91] "Draft Guide to the POSIX Open Systems Environment", P1003.0/D14,
IEEE Computer Society, November 1991.

[SYSB-1] "Systems Engineering”, EIA Engineering Bulletin SYSB-1, Electronics
Industries Association (EIA), December 1989.

2.2 SPECIFICATIONS
2.2.1 GOVERNMENT SPECIFICATIONS

[JSC 31000] Space Station Projects Description and Requirements Document, Vol. 3,
Rev G, 4 April 1991.
[SSP 30235] Space Station Program Glossary, Acronyms and Abbreviations, CR

BB007008A, No date

[PAVE PILLAR] "Architecture Specification for PAVE PILLAR Avionics", SPA-900990014,
Aeronautical Systems Division, USAF, January 1987.

2.2.2 CONTRACTOR SPECIFICATIONS

2.3 OTHER PUBLICATIONS
[BOES1] Flanagan, Rich and Van Ausdal, Art, "SATWG Flight Data System

Architecture Specification Outline" briefing, 25 October 1991

[BOOCHS7] Booch, Grady, "Software Engineering with Ada", 2nd Edition, Benjamin
Cummings Publishing Comp., 1987.

[GD90A]

[LAP90]

[WRA93]

General Dynamics "Space Avionics Requirements Study”, 21 October 1990,
Contract NAS8-37588, TD006 Presentation Package, as briefed to the
SATWG

Laprie, J. C., "Dependability: Basic Concepts and Terminology", J. C. Laprie
- Editor, Published by International Federation for Information Processing
(IFIP) Working Group 10.4 on Dependable Computing and Fault
Tolerance, December 1990.

Wray, R. B. and Stovall, J. R., "Space Generic Open Avionics Architecture
(SGOAA) Reference Model Technical Guide”, Job Order 60-430, Contract
NAS9-17900 for the JSC, NASA CR-188246, LESC-30347-A, April 1993.

- .

3. DEFINITIONS

Definitions are taken from the [POSIX91] or [LAP90] where applicable or otherwise

established as shown.

3.1 APPLICATION

Application is defined as the use of capabilities (services/functions) provided by an
information system specific to the satisfaction of a set of user requirements. [POSIX91]

3.2 APPLICATION PLATFORM

Application Platform (AP) is defined as the set of resources that supports the services on
which an application or application software will run. Also known as a host platform.

[POSIX91]

ICATI P RAM INTERFACE

Application Program Interface (API) is defined as the interface between the application
software and the application platform, across which all services are provided. [POSIX91]

3.4 APPLICATION SOFTWARE

Application Software is defined as software that is specific to an application and is composed
of programs, data and documentation. Application software has uniquely defined
interfaces. [POSIX91]

3.5 ARCHITECTURE

Architecture is defined for this standard as the structure of Application Software, API, AP,
and External Environment Interfaces (EEIs) which describe the organization and interfaces

of a system.
3.6 AVAILABILITY

Availability is a measure of the probability that a designated system will delivery the correct
service when called upon at any random point in time. [Adapted from LAP90}

31

3.7 AVIONICS SYSTEM

Avionics System is defined for the purpose of this standard as the set of all electronic and
processing based subsystems on a space vehicle, including all hardware, software and other

electronics needed to control and operate the space vehicle. It is the collection of system

elements and allocated capabilities that provides the coordinated functionality for end-to-

end processing in handling the information needed to interface the space vehicle's major
components, to control its interaction with its environment, and to respond to human

commands. (Adapted from [JSC 31000])

3.8 MMUNICATION FACE

Communication Interface is defined as the boundary between application software and the
external environment, such as application software on other host platforms, external data
transport facilities and devices. The communications interface may be internal to one space
vehicle or across multiple space vehicles. [POSIX91]

The services provided are those whose protocol state, syntax and format all must be
standardized for interoperability.

3.9 COMPONENT
Component is one of the parts resulting when an entity is decomposed into constituent
parts.

3.10 CONTINUITY
Continuity is defined to mean that requirements changes are proportional to design

changes, i.e., that changes in the requirements will propagate into changes of the same order
of magnitude in the design. - ’

3.1 CONTROL SYSTEM

Control Subsystem is an application which selects and implements alternative actions based

on a-priori criteria or real time guidance.

32

-~ .

7::‘\/'

3.12 CORE _AVIONICS

Core Avionics is defined as the control subsystems and the supporting avionics (hardware
and software) needed to enable these control subsystems to function. Core avionics include
the controls for each of the traditional space avionics hardware subsystems (such as
Guidance Navigation and Control (GN&C) and Communications and Tracking (C&T)).
The avionics hardware sensors and effectors are outside the core avionics boundary.

3.13 DATA

Data are the sensor outputs to the system, input to applications from the system, output
from applications to the system, input to crew or operations control elements from the
system, outputs from crew or operations control elements to the system. Data may include

commands.

3.14 DATA BASE MANAGER

Data Base Manager is the control subsystem which manages structured data files, file
transfers and file redundancy management.

3.15 DATA PROCESSING SYSTEM

Data Processing Subsystem is an application subsystem providing data processing services.
Data processing subsystems do not perform control subsystem functions.

3.16 DATASYSTEM

Data System (for example the Space Data System - (SDS)) is a network of data system
services, onboard computational resources, data storage, and human-machine interface
devices which provide onboard command and control, data transmission,
computation/processing, and operating application software to support a space vehicle's
users (crew and controllers), interfacing systems, applications and subsystems.

3.17 DATA SYSTEM SERVICES

Data System Services (for example the Space Data System Services - (SDSS)) is a service
subsystem with a generic functional architecture designed to provide a comprehensive set

of services to all vehicles and subsystems.

33

3.18 DATA SYSTEM MANAGER

Data System Manager is the control subsystem which manages the housekeeping and status
control services for the SDSS.

3.19 DECOMPOSABILITY

Decomposability is defined to mean requirements can be broken into smaller pieces with
potentially simpler solutions or at least better understanding and a capability for further

decomposition as needed.

3.20 DEGRADED MODE

Degraded mode is a system condition wherein some system elements (such as hardware,
software, human, or procedural) are sufficiently unhealthy that the system cannot operate

normally.

3.21 DEPENDABILITY

Dependability is defined as the trustworthiness of an avionic system such that reliance can
justifiably be placed on the service it delivers. Depending on the application(s) intended for
the system, different emphasis may be put on different facets of dependability, i.e.
dependability may be viewed according to different, but complementary, properties, which
enable the attributes of dependability to be defined:

® with respect to the readiness for usage, dependable means available;
® with respect to the continuity of service, dependable means reliable;

® with respect to the avoidance of catastrophic consequences on the environment,

dependable means safe;

® with respect to the prevention of unauthorized access and/or handling of
information, dependable means secure. (Derived from [LAP90]).

3.22 DIRECT INTERFACE

Direct Interface is defined as the connection between an entity sending or receiving data
with another entity receiving or sending data for transmission of the same data along the
routing path associated with moving data from the source of the data to the end user of the

Cm—

data. Data is used by an entity in a direct manner if it passes the data on without changing
the data; thus, for example, network operating systems are direct interfaces between
applications when they package or unpack data and send it to another network node.

3.23 DISTRIBUTED SYSTEM

Distributed System is a collection of computers, memories, buses and networks that are
concurrently operating in a cooperative manner and communicating with each other.

3.24 END-USER

End-user of data is the last entity which makes a significant transformation, conversion or

operation on the data.

3.25 ENTITY

Entity is an abstract element that represents an object in the real world, its data attributes
and essential services with their respective performance and quality characteristics.

3.26 ERROR

Error is defined to be that part of the system state which is liable to lead to subsequent
failure. [LAP90]

3.27 ERROR PROCESSING

Error Processing is defined to be the actions taken in order to eliminate errors from a
system. Error processing is error detection followed by either error recovery or error
compensation. Error recovery replaces an error-free state for the erroneous one. Error
compensation uses the redundancy of the state to enable the delivery of an error free service

from the erroneous (internal) state. [LAP90]

3.28 EXTERNAL ENVIRONMENT

External Environment (EE) is defined as a set of external entities with which the application
platform exchanges information. These entities are classified into the general categories of

human users, information interchange entities and communication entities. [POSIX91]

35

3.29 EXTERNAL ENVIRONMENT INTERFACE

External Environment Interface (EED) is defined as the interface between the application
platform and the EE across which information is exchanged. The EEI is defined primarily in
support of system and application interoperability. This interface consists of
human/computer interaction services, information services, and communications services.

[POSIX91]

3.30 EXTENSIBILITY

Extensibility is the ability of an architecture to be extended or adapted to new conditions,

changes in specifications or new technologies.

3.31 EAILURE

Failure is defined as a deviation of the delivered service from the specified service, where
the service specification is an agreed description of the expected function and/or service.

[LAP90]

3.32 FAULT
Fault is defined as the adjudged or hypothesized cause of an error. [LAP90]

3.33 FAULT TOLERANCE

Fault Tolerance is defined as providing a service complying with the specification in spite of
faults. Fault tolerance is carried out by error processing and fault treatment. Error
processing is aimed at removing errors from the system state, if possible before failure
occurrence; fault treatment is aimed at preventing faults from being activated -- again.

[LAP90]

3.34 FAULT TREATMENT

Fault Treatment is defined to be the actions taken in order to prevent a fault from being re-
activated. The first step in fault treatment is fault diagnosis, which consists of determining
the cause(s) of error(s), in terms of both location and nature. This is followed by fault

passivation, which prevents the fault from being activated again. If the system is no longer

capable of delivering the same service as before, then a reconfiguration may take place.

[LAP90]

3.35 ELIGHT CRITICAL FUNCTION/INTERFACE

Flight Critical Function is a function or interface which, if it fails, could cause loss of vehicle
control resulting in loss of the vehicle and, if present, crew. The function or interface is
characterized by the presence of hard deadlines (usually in the range of milliseconds), where

missing a deadline is a failure.

3.36 FUNCTION

Function is an action/task that the system must perform to satisfy customer and end user
needs. Control of mission critical functions may require hard deadlines, where missing a

deadline is a failure.

3.37 GENERIC ARCHITECTURE

Generic Architecture is an architecture where the elements of the architecture do not
depend on any one mission or program for their definition. The elements of a generic
architecture can be tailored to apply to many different missions and programs.

3.38 HUMAN/COMPUTER INTERFACE

Human/Computer Interface is the boundary across which direct interaction between a

human being and the application platform take place.

3.39 INTERFACE

Interface is the shared boundary between two functional units, defined by functional and

other physical characteristics, as appropriate.

3.40 INTEROPERABILITY

Interoperability is defined as the ability of two or more systems to exchange information
and to mutually use the information that has been exchanged. [POSIX91]

3-7

3.41 LOGICAL INTERFA

Logical Interface is defined as the requirements associated with establishing a data
interchange interface between a source of data and the end user of the data. The end user of
the data must be identified to include the requirements for the data and the source
supplying the data must also be identified. Data routing is transparent to logical interface
entities. Routing of the data should not be a concern to the source and end user because the
routing (i.e., direct requirements) is transparent to these entities.

3.42 MISSION CRITICAL FUNCTION/INTERFACE

Mission Critical Function or Interface is any function or interface which, if it fails, results in

an incomplete mission, a mission abort or a loss of payload.

3.43 MISSION READY MODE

Mission Ready Mode is a system condition wherein all system elements, including
hardware, software, human and procedural, are available to enable the system to perform
its intended function and the current mission for which it is intended.

3.44 MODE

Mode is a predefined set of hardware and software configurations, and associated
procedures used to organize and manage the conditions of operation for an avionics
system's behavior, as planned, pre-planned or directed by a human.

3.45 MODULAR ARCHITECTURE

Modular Architecture is an architecture composed of discrete components such that the
design of one component depends only on the interface to other components, not on their
internal design. A modular architecture is decomposable, understandable, protected, has
continuity and is organized in a robust structure. It is desirable that a change in one
component has minimal impact on other components. (Adapted from [SSP 30235]).

?,_7\ .

3.46 NETWORK SERVICES MANAGER

Network Services Manager (NSM) is a control subsystem which manages peer-to-peer
communication between application software running on distributed processing elements

communicating over a network.

3.47 OBJECT

Object is something perceptible to the sense of vision or touch or to the mind.

3.48 ONBOARD HEALTH MANAGEMENT

Onboard Health Management is defined as the hardware and software used to monitor and
control on board Avionics System resources to prevent or respond to system failure. This
includes the ability to efficiently monitor, checkout, and test the Avionics System, Core
Avionics, and related non-avionics subsystems before, during, and after operation, as
applicable. Onboard health management supports, as required, reconfiguration of Avionics

System resources to prevent catastrophic failure.

3.49 OPEN FORUM

Open Forum is defined as the review of a subject in a public consensus process.

3.50 OPEN SPECIFICATION

Open Specifications are defined as public specifications that are maintained by an open,
public consensus process to accommodate new technologies over time and that are
consistent with international standards. The public consensus process for open
specifications must be maintained and accepted by an open forum. [POSIX91]

3.51 OPEN SYSTEM

Open System is defined as a system that implements sufficient open specifications for
interfaces, services, and supporting formats to enable properly engineered application
software: [POSIX91]

* to be ported with minimal changes across a wide range of systems
* to interoperate with other applications on local and remote systems

* to interact with users in a style that facilitates user portability

39

3.52 OPEN SYSTEM INTERFACE STANDARDS

Open System Interface Standards are standards that provide for open specifications of open A4

systems.

3.53 OPEN SYSTEM APPLICATION PROGRAM INTERFACE

Open System Application Program Interface is defined as a combination of standards-based
interfaces specifying a complete interface between application software and the underlying
application platform. This is divided into the following parts: [POSIX91]

¢ Human/Computer Interaction Services API
e Information Services API
¢ Communication Services API

* System Services API

3.54 OPEN SYSTEMS ARCHITECTURE

Open Systems Architecture is defined as an architecture for an open system using open

specifications. It consists of a structure of interconnected functional subsystems (i.e., black

boxes) using non-proprietary communications, based on open specifications for interfaces, -
and providing high level standard services. The interface between the application software

and the underlying application platform must be based on an Open System Application

Program Interface. To be open, the architecture must be extensible through the addition of

subsystems, services and resources following open specification rules.

3.55 QPEN SYSTEM ENVIRONMENT

Open System Environment (OSE) is defined as the comprehensive set of interfaces, services
and supporting formats, plus user aspects for interoperability or for portability of applica-
tions, data, or people, as specified by information technology standards and profiles.
[POSIX91]

3.56 QPERATING SYSTEM

Operating System (OS) is the layer of software that isolates services and application software
from the application platform hardware element. The OS provides services for at least
management, allocation, and deallocation of the processor, memory, timing and
input/output (1/0) processing resources for application and service software. \ =4

3-10

3.57 OPERATIONALLY READY MODE

Operationally Ready mode is a system condition wherein most system hardware, software,
human and procedural elements are functioning correctly, but not all subsystems are
configured as needed for a mission to be performed.

3.58 PLATFORM

See Application Platform definition.

3.59 PORTABILITY

Portability is defined as the ease with which software can be transferred from one platform,

application or information system to another. [POSIX91]

3.60 PROFILIN

Profiling is the process of selecting a set of one or more base standards, and where
applicable, the identification of chosen classes, subsets, options, and parameters of those base
standards, necessary for accomplishing a particular function. (The profile selection process
is discussed in section 6 of [POSIX91)).

3.61 PROTECTI

Protection is defined to mean that the architecture will limit the effect of abnormal
conditions in design elements at run-time to just the affected modules or as a minimum

will limit the propagation of abnormal conditions.

3.62 RED-TAGGED MODE

Red-tagged mode is a system condition wherein sufficient system hardware, software,
human or procedural elements are failed that the system cannot operate at all.

3.63 RELIABILITY

Reliability is a measure of the probability that an item will deliver the correct service under
specified conditions without failure, for a specified period of time.

3-11

3.64 REQUIREMENTS ARCHITECTURE

Requirements Architecture is an architecture that can be tailored for design implementa-

tion based on actual system requirements.

3.65 ROBUSTNESS

Robustness is the measure of a system'’s ability to support continued functioning under

abnormal operating conditions.

3.66 SAFETY CRITICAL FUNCTION

Safety Critical Function is any function which has an associated condition, event, operation,
process, equipment or system (including software) with the potential for catastrophic injury
or damage to onboard systems, life, or environment. (adapted from [SSP 30235] and [LAP90].

3.67 SERVICE

Service delivered by a system is its behavior as it is perceived by its user(s).

3.68 SERVICE SUBSYSTEM

Service Subsystem is service software on an application platform, which provides
transparent services to the using control or data processing subsystem.

3.69 SOFTWARE

Software is defined as the programs, procedures, rules, and any associated documentation
pertaining to the operation of a data processing system. [POSIX91]

3.70 SQURCE

Source is the originator of data passed across a logical interface.

3.71 SPACE DATA SYSTEM
See Data System definition.

3-12

3.72 SPACE DATA SYSTEM SERVICES (SDSS)

See Data System Services definition.

3.73 SPACE GENERIC OPEN AVIONICS ARCHITECTURE (SGOAA)

SGOAA is defined as the target open architecture standard being developed to provide an
umbrella set of requirements for applying a generic architecture interface model to the
design of specific avionics hardware/software systems. This standard defines a generic set of
system interface points and establishes the requirements for applying appropriate low level
detailed implementation standards to those interfaces points. The generic core avionics
system and processing hardware architecture models provided by the standard are robustly
tailorable to specific system applications and provide a platform upon which the generic
interface model is to be applied.

3.74 INPUT/QUTPUT DATA SERVICES MANAGER

Input/Output Data Services Manager is the interface handling subsystem that manages the
services that process requests for interaction between sensors, effectors, application software

and other services.

3.75 STANDARD
Standard is a document established by consensus and approved by a recognized body, that

provides, for common and repeated use, rules, guidelines, or characteristics for activities or

their results, aimed at the achievement of the maximum degree of order in a given context.

3.76 STANDARDIZED PROFILE
Standardized Profile is defined as a balloted formal, harmonized document that specifies a
profile. [POSIX91]

3.77 SYSTEM

System is defined as the composite of equipment, material, computer software, personnel,
facilities and information/procedural data that satisfies a user need. [SYSB-1]

3-13

3.78 SYSTEM HARDWARE ARCHITECT

System Hardware Architecture is an architecture consisting of the set of hardware resources
in a configuration of distributed computers, memories, buses and network elements.

3.79 SYSTEM SOFTWARE ARCHITECTURE

System Software Architecture is an architecture consisting of the elements and interfaces

between software components in a system.

3.80 SYSTEM SERVICES SOFTWARE

System Services Software is common software, independent of application software, which
is needed to run application software and enable it to interface to data within a system or
across the EEL. This is similar to the POSIX entity, system software, which is defined as the
application independent software that supports the running of application software.

3.81 TASK
Task is defined as a software entity that is executed in parallel with other parts of a software

program to perform an action. [BOOCHS7]

3.82 UNDERSTANDABILITY

Understandability is defined to mean all requirements related to a subject can be found and
viewed together, and individually and jointly understood by the analysts and designers.

3.83 USER

User is another system (human or physical) which interacts with the target system.

3-14

o/

4., GENERAL REQUIREMENTS

The SGOAA shall [1] be used to determine the interface points and requirements for the
control of, and information exchange between, onboard subsystems, support to the crew,
and effective interfaces between onboard and offboard systems. In accordance with system .
requirements, a SGOAA compliant architecture shall [2] meet open standards criteria. A
SGOAA compliant system architecture shall [3] provide data acquisition, data storage, data
processing and data communication functions that interconnect architectural elements as
shown in the functional interface diagram, Figure 4-1. Architectures developed in
accordance with this standard shall [4] meet the following general requirements for
developing new architectural elements and for using existing applications and mission

elements.

4.1 OPEN SYSTEMS REQUIREMENTS

An architecture developed in accordance with this standard shall [1] satisfy the open systems
architecture definition incorporated in this standard. The open architecture so developed
shall [2] be capable of being readily expanded in functionality and performance without
redesign or significant modification to the existing system. An architecture satisfying this
standard shall provide information hiding, abstraction, inheritance, modularity, robustness

and extensibility.

Control subsystems may be decomposed into lower level subsystems. A control subsystem
usually implements a unique avionics capability. These control subsystems may have
flight, mission, or safety critical functions.

4.2 LOWER LEVEL STANDARDS SELECTION

Lower level standards developed by accredited standards development organizations

(which use an open forum) shall [1] be preferred in selection over those standards
developed by bodies using a closed forum. Lower level standards shall [2] be selected by the
process of developing a standardizedprofile. Architecture specifications for which there is
no draft or approved standard shall [3] not be selected. One of the driving requirements for
selection shall [4] be selection of a standard that provides the full range of services required
to satisfy the system applications. Other factors to consider in standards selection shall [5] be
degree of openness in development, stage of completion, stability, compliance with national

41

s3de}IAJU] [euonIUNg VVODS "I- 3131y

Sple-AeN @
Jojleoyiap 3 159 ‘uonesha) Bupjoesy - llen @
SUOBIUNWIWOD VA3 @

spuewwod - sigjjonuod
Ailanoesg - Anowsjey - —> peojhed @

| sabpliq/Aemaleb - L s19j10qu0)
9PON @

pujwii] g bujouanbag JuaA siafjouo)
punois) @

suoioun
[EAI2A19Y B aDeI0)S Smov lound

obien/peojied

onnquls uonisinbo mry
nnquisig 3 uonis| VY ejeq suojjouny —.—O_nﬂo__ﬁﬂﬂ

s10j09)0 -
SHI0M}aU
uopelUBWINISU| -
SI0SU3S ews -
- MaId pieoquo -

SUOHEIUNWIWOY) YIOMION

vy

S39JAI2G JIS() UOWIWOY)

Juawabeuey swalsAs

juawal3 Wby

42

and international standards, degree of satisfying a SGOAA service need, consistency with
the SGOAA and availability for implementation without restrictions.

Preference shall [6] be given to existing mature standards, followed by emerging standards,
and only if necessary, followed by new standards. The order of selection within these
preferences is as follows:
. Approved standards developed by (a) accredited international bodies, (b) accredited
regional bodies and (c) accredited national bodies.

® Draft standards developed by (a) accredited international bodies, (b) accredited
regional bodies and (c) accredited national bodies.

® Recognized de facto standards and specifications developed by nonaccredited bodies

using an open forum.

® Approved standards and specifications developed by nonaccredited international

standards bodies using a closed forum.

® Approved standards and specifications developed by nonaccredited national
standards bodies using a closed forum.

43 ECT AT

An Architecture prepared in accordance with this standard shall [1] provide the following
features.

4.3.1 REQUIREMENTS ARCHITECTURE

An architecture prepared in accordance with this standard shall [1] be an architecture that
can be tailored for design implementation based on actual system requirements.

4.3.2 CRITICAL INTERFACES

An architecture prepared in accordance with this standard shall support [1] flight, [2]
mission and [3] safety critical functions and interfaces, as required.

43

4.3.3 NON-CRITICAL INTERFACES

An architecture prepared in accordance with this standard shall [1] support non-critical 7/
support functions and interfaces, as required.

4.3.4 RESOURCE CONTROL

An architecture prepared in accordance with this standard shall [1] provide for control of the
system resources that are used for control and information processing in onboard systems
by use of system services software as requested by application software through a standard

interface.

4.3.5 COMMONALITY

An architecture shall [1] be comprised of common hardware and software components to

the maximum possible extent.

4.3.6 INTERFACE STANDARDIZATION

An architecture prepared in accordance with this standard shall [1] provide standard

interfaces and shall [2] also allow user definable interfaces where no standards exist or \ =
standard is not applicable. Interfaces between hardware and other hardware entities shall [3]

be based on standards. Interfaces between hardware and software shall [4] be based on

standards. Interfaces between system services software and application software [5] shall be

based on standards. The following interfaces shall [6] be prohibited in an architecture

compliant with this standard: (1) direct, non-service task to task communications, and (2)

applications to applications direct information exchanges, which bypass use of system

services.

4.3.7 CREW OVERRIDE

For crewed vehicles, an architecture prepared in accordance with this standard shall [1]
enable crew intervention, through multiple techniques, to safely override or inhibit
automatic flight, mission or safety critical functions. For uncrewed vehicles, the
architecture shall [2] enable ground control station intervention to safely override or inhibit

flight, mission or safety critical functions.

4.3.8 ONBOARD HEALTH MANAGEMENT

An architecture compliant with this standard shall [1] provide at least health management,
status monitoring and warning capability to monitor critical functions in onboard systems,
subsystems, components and crew and shall [2] provide avionics system level error recovery
and fault treatment for non-critical hard deadline functions. Fault tolerance shall [3] be
carried out by error processing and fault treatment. System service software built-in-test
(BIT) to include error detection, processing and recovery and fault treatment shall [4] be
incorporated into software control modules. Hardware built-in-test equipment (BITE) to
include error detection, processing and recovery and fault treatment shall [5] be
incorporated into hardware modules. Error processing and recovery and fault treatment for
flight critical functions shall [6] be performed at the system services software and/or
hardware module level. The interface between hardware BITE and health and status
applications software shall [7] be through standard software services. Error detection,
processing and recovery and fault treatment shall [8] be timely enough to prevent loss of

critical functions.

At least two levels of health management, status and warning capability may be provided in
compliant architectures: level 1 is application software prepared for the user's platform
with knowledge of the mission, system and user goals. Level 2 is service software which
utilizes standard health management capabilities (i.e., in Data System Services) as defined
in paragraph 4.3.9.4 of this standard.

On board health management that controls allocation of avionics system resources shall [9]
be implemented in application software where knowledge of the mission or specific system
is unique and cannot be entered into the table-driven health management Data System
Services software . The interface between the reconfiguration hardware and the controlling
application software shall [10] be through standard Data System Services software.
Application software performing on board health management shall [11] be capable of
overriding reconfiguration decisions made by fault tolerance functions provided in Data
System Management under Data System Services.

An architecture compliant with this standard shall [12] provide operating modes for at least:
(1) mission ready, (2) operationally ready, (3) degraded, and (4) red-tagged.

45

4.3.9 DATA SYSTEM SERVICES

An architecture prepared in accordance with this standard shall [1] include requirements for
data system services. This shall [2] consist of at least requirements for input/output data
services management, network services management, data base management, data system

management, and an operating system.

4.3.10 GROWTH AND SPARE CAPACITY

An architecture prepared in accordance with this standard shall [1} accommodate growth
and spare capacity in data storage, processing throughput, network throughput,
input/output and additional sensors/effectors as required by system documentation.

4.3.11 MODULARITY

An architecture prepared in accordance with this standard shall [1] be modular.

4.3.12 SERVICE TRANSPARENCY

An architecture prepared in accordance with this standard shall [1] be implemented with
sufficient transparency that the user will have visibility into the operation of services, but
not necessarily the implementation of services.

4.3.13 TECHNOLOGY TRANSPARENCY

An architecture prepared in accordance with this standard shall [1] be implemented with
sufficient transparency that technologies applied to design can be upgraded without revising
the architecture and without negative impact on the user.

4.3.14 INTEROPERABILITY

An architecture prepared in accordance with this standard shall [1] support interoperability
by providing standard interfaces between multiple programs.

4.3.15 DEPENDABILITY

An architecture prepared in accordance with this standard shall [1] meet dependability
requirements in a manner that supports standard interfaces, commonality, modularity and
interoperability. Such an architecture shall [2] further satisfy the following subparagraphs.

46

4.3.15.1 Availability

An architecture compliant with this standard shall [1] be designed to satisfy the specified
Availability requirements of the designated system.

4.3.15.2 Reliability

An architecture compliant with this standard shall [1] be designed to satisfy the specified
Reliability requirements of the designated item.

43.15.3 Safety

An architecture compliant with this standard shall [1] provide an interface not dependent
upon avionics system specific safety features for application software that is required to be

portable.

4.3.15.4 Security

An architecture compliant with this standard shall [1] provide an interface not dependent
upon avionics system specific security features for application software that is required to be

portable.

47

i
[

5. ARCHITECTURE INTERFACE DETAILED REQUIREMENTS

The SGOAA model is based on partitioning between logical and direct requirements as
illustrated in Figure 5-1. The model is established to include architectural functions,
hardware, software and interfaces for all avionics systems. This SGOAA requirements
description includes both system service software and applications software for the Space
Data and Operations Control Subsystems. Interfaces in this model are valid for both one
platform and multi-platform architectures on one or more vehicles.

This model is to be used to define how system requirements are to be applied at the
appropriate system level to determine the logical and direct interface points. System logical
data flow requirements should be created for each client/server entity addressing the data
attributes needed by that entity or needed to be provided for some other entity. The logical
data flow requirements should identify the source of the data and the end-user needing the
data, as well as the characteristic attributes required of the data. Logical data flow
requirements should not be concerned with the mechanism for implementing the data
interchange. Implementation related requirements for the interfaces are a direct interface
issue relating to the mechanisms provided for flowing the data from the source to the end-
user. Sources of the design requirements for the interfaces, application platform hardware
and application platform services should be derived from the Applications Software
requirements and their logical data attribute requirements based on the user's needs.

5.1 SYSTEM ARCHITECTURE REQUIREMENTS

The SGOAA System Architecture as shown in Figure 5-2 shall form the basis for creating a
model of the system under development.

System architecture models shall [1] consist of a functional definition of the types of
processors and communications paths required. The model shown in figure5-2 has three
types of processors interconnected by two types of communications. This model only shows
one of each type of hardware; the number of instances of each type of processor is variable
depending upon system unique requirements and may range for 0 to n. For example, a
centralized system architecture may look just like Figure 5-2, while a distributed:system
architecture may have multiple General Avionics Processor (GAPs), Special Avionics
Processor (SAPs) and Embedded Processor (EPs). Either type of architecture may have many

51

%

sjudwRIINbay uBisa(193117 03 UMOPMOL] SHUdWAIMbIY wdISAS [enSor] *1-< aanSiy

33

A3
CRITVETS

S30V4H31NI 1LO3HId

IdV

3OV4H3LNI TVIID0T

v Aug

52

INANYIIY WAISAS °7-S 3.1y

LOINNOJHILNI
TVNYH3LNI

L T2l 2

dlempieH
pazijedads

s

Bujieiii Jegonuod

230N A =2

aiem)jos .
pazijeloads:

[IVITLIPVe L. T

(o]}
08S9904d SOIUOIAY |e1dadg

LO3INNOJHILNI VOO0

(s)uonpdo

s10}993
$10SUS

esowpiei eowpIeIU)
joeuucoIeIu] JosuucOIeIU)

JobBeuepy .
s0d)Aleg
wjeq ndin(

anduj

e WAISAS eleq

aseg vle(

s

weisAsqng
j105u0d jonuo)d
suonwiedo suojeiedo
eoeds W nrailkna

mne SUonedlddy

- asodd

jonucs jonuod
OND 18Mod
MeuD oe|3

(W 10s) ..ommwon..._m m.o_:o_>< _So:oo

] eoupieiu)

mhma_ummr_ g
pappaquig &

o

<

alemyos
Papo20IDIN

10853204d pappaqui

1OINNOJHILNI WILSAS

53

system interconnects and/or local interconnect mechanisms. More than one sensor and
effector will usually be the rule in most non-trivial systems. 7

The processors shown in the system architecture in Figure 5-2 are a GAP for general
purpose processing, a SAP for specialized processing support (vector/massively
parallel/other), and an EP for the function of processing data within the sensor and effector
devices. The sensors and effectors shown in the example may also interact directly with the
main processors (the GAPs) or indirectly through EPs built into the sensors and effectors (if
applicable).

Communications paths illustrated are of three types: system interconnects such as core
networks for interconnecting sets of general processors or nodes, local interconnects such as
local buses for interconnecting EPs and SAPs with their supported GAPs and general
purpose processing applications, and internal interconnects such as backplane buses.
System models shall [2] follow the general format of Figure 5-2, but shall [3] be tailored to
match individual system requirements, in particular the program's application of sizing to

the "system".

y
“\

(

of six classes of interfaces as shown in Figure 5-3 and defined in Table 5-1. These classes are
the levels of interfaces from hardware up to high level systems which are to be completely
defined in an architecture developed in accordance with this standard. Definition of each
interface class shall [2] be in accordance with the requirements contained in the following

paragraphs.

For flight and safety critical functions, the exchange of information for error processing and
control shall [3] be restricted to classes 1,2, and 3. For mission critical functions, the
exchange of information for error processing and control shall [4] be restricted to classes
1,2,3, and 4. For any critical functions or service function with hard deadlines, an
architecture prepared in compliance with this standard shall [5] not allow the exchange of
information for error processing across Interface Classes 5 and 6. Errors introduced by data
transmission are removed at the lower interface class. The data itself, however, may still

have errors if the source of the data was in error. Error processing on these data error may

[SPOJAl 20BJIQU] INIINYIIY DUIIPIY °€-S d4nS1y

elemyos = MS

weug = a jeslboq = 7
8JejJou| IUSLULOAALT feuteIXT = 133
adepelu] ulio)ield suoneoyddy = |4y

0°€001d XISOd 01 S8ssEeD NIV jo sdiystonejoyd

EE
A

(@) 1 ssepd

(@) L ssen

(@) Zz sse1d

(7) 9 ssep)

55

Table 5-1. Architectural Interface Classes

CLASS

DESCRIPTION

Hardware-to-Hardware Direct:

Class 1 hardware direct interfaces are the direct connections between different types of
hardware such as needed to enable buses and communications links to address processors or
needed to enable processors to address memory registers.

Hasdware-to-Operating System Extension Software Direct

Class 2 hardware to operating system extension software direct interfaces are the direct
connections between hardware registers and operating system extension service software or
other software performing that function, such as drivers needed to enable address registers
to move data packets from hardware to system service software, and service drivers which
can respond to the data packets.

ratin m Servi -£Q- 1) Dir

Class 3 operating system service software to other software direct interfaces are the direct
connections between operating system service code and other local software code sets,
which enable operating system software to receive and interpret data packets, and pass
them on to other software code which will process them locally.

rvi -to-D m Servi Logical:

Class 4 system service software to other system service software logical interfaces are the
indirect connections which enable local service software to determine the address of the
intended software in other local or remote locations which need the register data being
stored and to pass the data appropriately. Enables the handling of logical data transfers
from source to user service

D m Servi f -to-Applicati irect:

Class 5 system service software to applications software direct interfaces are the direct
connections which enable software service code to access and process data from local
application software code.

ion -fo- lication Logical:

Class 6 applications software to applications software logical interfaces are the indirect
connections which enable an application originating data to pass it to an application
which needs to use the data, or enable an application needing data to determine the source
from which the data must be obtained. These are logical data transfers from source to user.
This interface provides the indirect connections that allow applications in different
systems or in the same system to communicate, thus enabling applications software to
interact across or within system boundaries to accomplish a mutual purpose. These
interfaces may be applicable to applications executing in the same processor, in different
processors in the same node or in different systems.

take place in the application software, but it must be understood that such error processing
reduces the portability of this Application Software.

521 CLA - HARDWARE-TO-HAR RE DIRE NTERFA
REQUIREMENTS

The Class 1 Hardware-to-Hardware Direct Interface shall [1] be defined in accordance with

the three key aspects of the class 1 direct interface: the interface architecture, the generic

processing external hardware architecture, and the general avionics processor internal

hardware architecture.

All types of error processing on data transmissions through the class 1 interface shall [2] be

allowed.

5.2.1.1 Interface Architecture
5.2.1.1.1 Hardware to Hardware Direct Interfaces

Hardware to hardware direct interfaces shall [1] be defined as shown in Figure 5-4. These
interfaces consist of the nuts and bolts, chips and wires of the system architecture model
described in paragraph 5.1. With regard to the model, this interface shall [2] consist of all the
hardware to hardware interfaces within each processing element, as well as the hardware
interfaces to the external environment by way of the system interconnect, local
interconnects , internal interconnects or direct interfaces. This architecture shall [3] provide
for three classes of processors: the EPs, SAPs and GAPs for which standardized interfaces
shall [4] be required to be selected from a set of acceptable lower level interface standards.

5.2.1.1.2 Hardware Architecture

The GAP architecture shall [1] be configured to provide hardware components to interface
to a system interconnect, to interface to local interconnects, to process applications, perform
BIT and optional components for other purposes as required by the system. The SAP
architecture shall [2] be configured to provide hardware components for control, filtering,
bus interface, BIT and other specialized purposes as required by the system. The EP
architecture shall [3] be configured to provide hardware components for microcontrol, BIT,
hardware handlihg and setu@ and bus interface as required by the system.

57

$30BLIAIUY 1IN AICMPIBH-0}-2IBMPIRY | SSB[D) °p-G 2anSyf

paepueys asepaju) = (@)

.I@

(s)uopdo (s)uopdo

(s)uopdo

(s)uondo

Pouuo)

Jeuseu] buissesoid | puissesnsq || Putsseooid
| weuuos |1 | oneonddy || 10euuossein
1 401y 1220 | b —

(dvD)
HOSSIADOHd HOSSID0Hd HOSS3ID0Hd
SOINOIAY SOINOIAY a3aqa3asni
TVHINID IVIOAdS

wiojie|d uonedijddy aiempJieH

a. The hardware architecture shall [4] provide communications from at least one of three
levels of communications: Level 1, System Interconnects (e.g., Fiber Data Distribution
Interfaces - (FDDI)), Level 2, Local Interconnects (e.g., MIL-STD-1553 bus and RS-449
links), and Level 3, Internal Interconnects (e.g., VME backplane). This is illustrated in
Figure 5-4.

b. Level 1 system interconnects shall [5] be implemented by high capacity networks or links
providing communications between host platforms using techniques such as FDDI or by

direct links between high data rate elements.

c. Level 2 local interconnects shall [6] be implemented by a combinations of buses and
direct links for analog, discrete or serial communications between subsystem elements

or components within one host platform.

d. Level 3 internal interconnects shall [7] be implemented by a combination of backplane
buses to connect devices such as circuit boards connected by VME or Futurebus+

backplanes and internal component links.

The communications from sensors or effectors to EPs are only possible through direct links
because the intention of the architecture is that embedded processors are those processors
embedded in the sensor or effector hardware devices to minimize the communications

latencies.

5.2.1.2 Generic Processing External Hardware Architecture

The Generic Processing External Hardware Architectures shall [1] be defined as shown in the
example in Figure 5-5. The architecture system interconnect represents the inter-subsystem
connectivity, and can be implemented by a combination of one or more communications
paths using point-to-point, ring, bus or other architecture designs. Typically, system
interconnects such as core networks are implemented by lower level standards such as FDDI
or Ethernet. Local interconnects provide the intra-subsystem connectivity for high speed
data communications between processors within one subsystem. Typically, the local
interconnects are implemented by lower level standards such as MIL-STD 1553B for local
command and data buses, R5-488 for timing controls, and direct links for analog and
discrete signals. The interface plugs shown represent the unique hardware interfaces which
shall [2] be defined by standards. o

59

) D

3INPINYIIY
$UO0IAY uad() J1I2UIN) 3EdS ¥ 10§ SIEBJINU] PUE JINIINYILY dIBAPIBH [EUId)XY Sulssad0l] dIIUIY) S-S aangdy

3OVAHIINI SHOL193443 SHOSN3S
J1GVNI43a H3SN @

SOHaVKD 3 03IA EYES.E SASAS ALIANTI@(SASAS

(.son1d.. 10)
mom<nz<kmm0<.._tm.—.z_ @

V (S)dVvO

JHNLOILIHOHY WIISAS Vivd 30VdS

5-10

5.2.1.2.1 GAP Architecture " -

GAPs represent general purpose data processors. A GAP, if required, shall [1] be one of two
forms: one for standard general purpose use [GAP(S)] and one for multiplexing and
demultiplexing signals [GAP(M)]. Typically, GAP devices are used where slow response
times (such as on the order of seconds to tens of seconds) are required. An example of a
compliant implementation of GAP(S) processors is the Standard Data Processor in the Space
Station Freedom program and the General Purpose Processing Element in the F-22
program. An example of a compliant implementation of the GAP(M) is the Multiplexer-
DeMultiplexer processor in the Space Station program.

5.2.1.2.2 SAP Architecture

SAPs if required, shall [1] provide the special purpose processing which is usually needed in
high power embedded computers and may be implemented by devices such as vector or
associative processors, massively parallel data processors, or arithmetic coprocessors.
Typically, SAP devices are used where response times (such as on the order of hundreds of
milliseconds to a second) significantly faster than in a GAP are required. Examples include
the associative and vector processors used in the F-22 program.

5.2.1.2.3 EP Architecture

Within each sensor or effector, this architecture allows, but does not require, the placement
of processors embedded in the sensor or effector unit. EPs if required, shall [1] be one of two
forms: one for effector processing [EP(e)] and one for sensor processing [EP(s)]. EPs shall [2]
provide the very high speed processing necessary to manipulate and convert analog data to
digital data while performing some preprocessing on it to reduce the data rate to a more
acceptable level for linkage back to the GAP(M). Typically, EP devices are used where very
fast response times (such as on the order of milliseconds or less) are required. Where the
data rate with the sensor or effector is acceptable to the GAP(M) and no other pre-processing
is required, direct interface to the GAP(M) may be used. Sensors and effectors interface to
the EP devices either through local communication interfaces or through direct links.

5.2.1.2.4 Lower Level Interface Standards

Lower level interface standards shall [1] be selected for implementing system interconnects,
local interconnects, GAP to EP direct links, GAP to S direct links, GAP to E direct links, EP to

5-11

S direct links, and EP to E direct links. User definable interfaces shall [2] be provided for the
SAPs. Lower level video and graphics interface standards shall [3] be selected to define 7
implementations for connecting the GAP devices to humans for development, operation

and maintenance of the systems.

5.2.1.3 General Avionics Processor Internal Hardware Architecture

The requirements for general purpose processing elements in a vehicle shall [1] be defined
as shown in the GAP architecture presented in Figure 5-6. The generic hardware elements
shown in the figure comprise the basic, generic hardware modular elements in the SGOAA.
The processor may be configured as a GAP(S), GAP(M), EP(s) or EP(e) depending on the set
of functions required by a specific application. The SAP is a special purpose case and may
require functions not included in the generic processor function set such as vector or

parallel processing.

5.2.1.3.1 GAP Function Set

The GAP function set is a shopping list of modular functions which can be used to build the

needed configuration. Each module shown provides a specific independently procurable

service. Additional unique service functions may be added by defining additional modules. 4
The actual implementation in hardware is interface standard, technology and detailed

design dependent. System performance requirements for hardware modular elements shall

[1] be a primary consideration in module selection to perform a specific function. System

error processing and fault treatment requirements for hardware modular element BITE

shall [2] also be considered in hardware modular element selection. Specific hardware

interfaces that shall [3] be defined by lower level standards are shown in Figure 5-6.

5.2.1.3.2 Internal Interconnect Interface Standards

Internal interconnect interface standards shall [1] be imposed to provide modularity with
the capability for technology upgrades and multiple vendor sources of processing functions
modules. Although only one internal interconnect bus is shown for the backplane in Figure
5-6, the actual bus implementation may consist of multiple buses depending upon the
specific application. Possible buses include data, time, test, and local memory. Multiple
standards exist for all of these bus types.

(

5-12

spiepuels
ooejelu]
030 ‘olpny
‘jo]jeed
‘leleg

‘Gojeuy
‘ayorsiqg

spJepuels
edeelU|

Jojjuopy
OOpIA

Spiepusls
CSLITE)
sng Bupuny

spiepuels

aoepeu|
leuonouUNyg
reuopdo

splepuels
Pnauuon

-J03u]
je007

2ININYOIY dIeMPIeY] [eutdjuy Juissadosg IIduan)

92B410}U| JUBWIUOI|AUT jeuselxI=A1epunog

'9-g 21m31y

©JEMYOS pue eJempieH
Bu|ssea0.d O/ | pezjjejoeds

Ajea

$10§S030id 019 ‘|RIneN ‘jejleled

ISSEI ‘OA|18|008S8Y ‘10106A

m:_mmooo._n_ O \ _

Jljtoeds sajydess pue ospiA

Sjuswie]3 108868204d JOYI0O

splepusig
108uu0d
-i03u|
weysAs

(210 ‘iIs08
‘301 “69)

9JEMYOS pUR SIeMpIeH

SpooN |ejoeds

Joj Lowe peeds ybIH / sse

sojydesn / 0opIA

(101e10ueb ow)) “°6'e) esemyos

-yimoln jeuojoung _Eo_ao

pue eJempleH dj1oeds Yojum

Bu|ssea0.id [eWION YHM esepeiu]

eJempieH pue seupinoy

edueuejujepy esoding |ejdeds

splepue)s
oeUUOdIeU|

{

uojidwnsuoy) easnosey

(0% Inoydey pue ise)

fewsejuy

spiepuels
eorpaIu]
sng
Kowepy

spJjepualg
edrpau|
we)shs
o%l

uopdUN4 joAuUo)

pue uojjis|nbay eieq

splepuels edelo|
6ujpeo

spiS |8djBoT/Bujssesosd

uo[iejos] 82in0sey
4 /1 weifoid uojiedjddy
‘pod uojiesiiddy uojssin

9044 198UU02I0}U]| [€207

uofioung uopngiisig eleq

spiepuBlS edelell]
Bujpeo

uopdwNsSuoD 62IN0seY

Bujssesoid uojes|iddy }-

201d Joeuuocalei] weisAs}

(N 10 S) 10SS3201d SOJUOIAY [BIBUIY)

5-13

5.2.1.3.3 Lower Level Interface Standards

Lower level interface standards as illustrated in Figure 5-6 shall [1] be selected for system %
interconnect, test and checkout system, mass memory, timing bus, discrete data, analog data,

serial data, parallel data, local interconnect, video/graphics, audio and optional functional

growth interfaces. For example, to implement the functions of the basic GAP(S) would

require implementation of the system interconnect processing, application processing and

local communications (e.g., local interconnect and 1/0) processing functions of the GAP

Hardware Architecture shown in Figure 5-6. A internal interconnect bus standard such as

Future Bus Plus (FB+), VME or Pi Bus would be imposed as the backplane data bus

standard. The backplane bus standard used in a specific architecture implementation might

consist of one or more specific buses; separate buses are permitted for uses such as test and

maintenance.

5.2.2 CLASS 2 - HARDWARE-TO-OPERATING SYSTEM EXTENSION SOFTWARE

DIRECT INTERFACE REQUIREMENTS
Hardware to operatiﬁg system extension software interfaces are shown in Figure 5-7. These
interfaces shall [1] consist of the interfaces from the operating system extension, low level
software or other software performing the same function (such as drivers in the OS5, data S
system manager, etc.) to the hardware instruction set architecture (ISA) and register usage. hd
With regard to the model, these interfaces are internal to each processing element. The
hardware elements are grayed out to show that these elements are a repeat of the previous
figure; the black elements represent the new capabilities and interfaces added by this
interface class. This class shall [2] define the interfaces for low level software drivers that
interact with the hardware for each of the processor types (EPs, SAPs, and GAPs). All the

drivers for all processor types shall [3] be contained in a SDSS sub-architecture.

5.2.2.1 Error Processing

All types of error processing on data transmissions for flight or safety critical functions
through the class 2 interface shall [1] be allowed except those employing retransmission. For
those mission critical or service functions that have no hard deadline requirements, error

processing employing retransmission shall [2] be allowed.

5-14

SIDRLIIIUY JIAN([IBMYOS WISAS-01-dICMPIRY T SSBL) °L-S dnS1y

piepuels adeua] = ()

: T LOINNODYILNI WILSAS
M THANNOIHIINI VIO

dvd
Eondo}——{@endo] —
(s)uopdo (sjuopndo
mc_mmo.oo#_ mc_mm.aoo id Bujsseosoid
198Uu0) uopjeojiddy || Peuuosseiu|
-J9)U] [e207] weyshs
CRLTIET| 0B saoeualu|
. ageuauy} MS-MH
SHAHA-dVD SHAHO-dVS SHAHG-d3
alemyjos

5-15

5.2.2.2 System Services Software

The system services software in the SDSS for the GAP shall [1] be organized into five \ =4
categories. The categories shall [2] be the Data System Manager, Data Base Manager,

Input/Output Data Services Manager, Operating System, and Network Services Manager.

(See section 5.3 for interface service requirements.) The software drivers for the SAP shall

[3] be organized into four catego;e; 7707)?ormattmg, normalization, specialized processing

interfaces, and local communications interfaces. The software drivers for the EP shall [4] be

organized into four categories: built-in-test (BIT), hardware handler interfaces, local

communications interfaces and microprocessor execution control.

5.2.2.3 Hardware/Operating System Extenslon Interfaces

The hardware/operating system extension interfaces needed for the hardware to be accessed
by low level software such as drivers shall [1] be defined as shown in Figure 5-8. The
interfaces are shown in black and labeled, and everything else has been grayed out to
highlight items of interest.

5.2.3 CLASS 3 - OPERATING SYSTEM SERVICES SOFTWARE-TO-SOFTWARE
(LOCAL) DIRECT INTERFACE REQUIREMENTS : : "~ 7

Operating system services software to other local software d1rect mterfaces shall [1] be
defined as the operating system interfaces shown in Figures 5-9. This definition consists of
the I/0 handler calling conventions and context switch conversions between the system
software drivers on one processing element interfacing with one or more system software
services to provide for local information exchange. Class 2 provided the software drivers to
isolate the hardware, Class 3 provides the remainder of the direct operating system
interfaces to local software services needed to operate the computer system.

All local software services shall [1] be grouped into the Data Systern n Services (DSS) sub- -
architecture and shall consist of the Data System Manager, Data Base Manager,
Input/OQutput Data Services Manager, Operating System, and Network Services Manager
Class 3 shall [2] provxde the direct interfaces between the operating system services to other
local data system services and applications for effective local interprocess communications
and support. These interfaces are direct interfaces because they enable operating system

service code to interact with software service code in other local entities. Although the = =

5-16

SIIALI(J dIempieH 03 JV5) "§-S a3

SPiS edepely|
OI-HAHQ-dVO

[s8004d SO|UOSIAY [eISUSD

I dO-HAHQ-dVD

SPIS eorpeI|

SPIS soepiell] SpIS edepel)|
sloAug 99d-UALGdVD WIW-HAUA-dVD s1aAuq
aoepalU| S ey agepau|
$PIS eoBpelU}
on 80BMAIU] \ LSN-HAHG-dYO o .
[eusauj
pieog SL-BAG-dVD
10SS900.1d s
Sennd S19AUQ s19AU(
Qdeudu| , SI9AN SI19A :
soydesn asepau| owmmﬂw“““._ mout_ch.___ o8 tw_nn__: aoepa1u|
JO3PIA uondo ! 18907 | 199UU02IAU| Aiowap
waisfis

5-17

S328J12JU] 19941(] 2IBM]JOS-0}-IBM]JOS WAISAS € SSBID *6-S N3y

plepuels adepuaul = ()

vove

S AINNOOHILNI WILSAS

103INNOJHIALNI VYO0

S$09|AI0S
eleqg
indino
andu|

(suonedijddy 10 SaJIAI8S o7l)
3p0H 1910 01 WAISAS bunerado

5-18

operating system services are a subset of the DSS, they shall [3] also provide direct low level
operating system service access not provided by the higher level DSS interface for those
users requiring this type of interface. Class 3 interfaces shall [3] meet derived requirements

based on the need of an application to support users.

5.23.2 Cl Flight, Saf nd Mission Critical Interf

For class 3 interfaces of flight, safety or mission critical functions with hard deadlines to
either the Data System Manager or to Device Drivers, all types of error processing on data
transmissions through the class 3 interface shall [1] be allowed except those employing
retransmission. For those mission critical or service functions that have no hard deadline
requirements, error processing employing retransmission shall [2] be allowed. For class 3
interface to applications, no error processing across the interface shall [3] be allowed (that is,
the data transmission itself is assumed to be error free).

5.2.3.3 Class 3 Operating System Interfaces

The operating system-to-system service software and applications software interfaces shall
[1] be defined as shown in Figure 5-10. The interfaces are shown in black and labeled. Note
that there are three possible types of interfaces: upward between the operating system
services to any software application, upward to other data system services, and downward to
the system extension software such as drivers within the operating system. Their grouping
into class 3 facilitates design of operating systems and all interfaces needed to insure

effective operating system performance.

5.2.4 CLASS 4 - DATA SYSTEM SERVICES SOFTWARE-TO-DATA SYSTEM
'SERVICES SOFTWARE LOGICAL INTERFACE REQUIREMENTS
Data system services software to data system services software interfaces shall [1] be defined
as shown in Figure 5-11. This is the peer to peer interface of data system services software
in one processing element (GAP, SAP or EP) interfacing with the systém software in the
same processing element or remotely to an external processing element to coordinate
operations in a distributed environment. Since Classes 1 to 3 isolated the hardware and
software services in each processor, Class 4 shall [2] provide the interface capability for
services in one processor to interact with services in the same or another processor. Class 4
interfaces shall [3] meet derived requirements based on the need of an application to '

support users in a multi-processing environment.

5-19

))

savefIau] waISAS Sunjesad("Qr-g aundiy

- A sdjydesn
N\ /O9PIA

 spig edepeu;
N\ idomsso
\ SPIS eaepel
. QIA-MS-SO ;
NN

, SPIS edRMOI| |
OI-MS"SO

SPIS eoepe] |
SNE-MS-SO 13N-MsSO

N\ spis eoepequ
\ 89d-Ms-S0

SJOA|I(Q
eoBLIa}U|
o

- spIS Goutcac_ M, mvum ooatsc_,w

7" spig eorpeu]
s_w_z.>>m.m0 spiS oomto.:_

sioAliQ g Ec,>_._n R NN
: : SIOAL | sedspalU) piemumog =
; sieAug \ | eoepelu| 5 eovLel] oout“. m_ | =
SJOALIQ edepeju))\ 1o9uuodeu} J: edep8IU| JoeUU02Ie)| %L se3vue) pasmdn =
esele| L {eusslu] . —

SI0AlQ
odejelu|
Aowepy

si1oAlIQ

edepelu|

Josses0.d
._o:-O

moo_iwm
 wesig
4 ,mcznxoao

SPIS eoeloU}

SPIS 8deje|
WSN-MS-SO

Waa-ms-so

$PIS edelielu)
WSa-ms-so

SPIS edejielu|
ddV-MS-SO

A suopeoyddy U

Am‘_w>:ov momtmE_
uoisualxg SO/MH

SpIS edepieju)
WSOI-MS-SO

5-20

SIJBJIAU] [8I1307] 1BM)JOS WIAISLS-0)-9IEM]JOS WIAISAS p sse) “T-S 2dnSy g

LOINNOOHILNI WILSAS

: LOINNODHILNI YOO

{onuo)
uopinsexsy

piepuels asepa)u|

SI9JSUEI] ejeq SoJINRS Joi0 O] SIJIAIRS

-®@

5-21

5.2.4.1 Class 4 Critical Function Error Processing

For flight critical functions, error processmg shall [1] not be allowed on data transmissions
across the class 4 interface. For safety critical, mission critical or service functions, error

processing not employing retransmission shall [2] be allowed.

5.2.4.2 Class 4 Data System Services Interfaces

The DSS interfaces needed to support local operations and logical access to other GAP data
system services shall [1] be identified as shown in Figure 5-12. The black-line interfaces are
the primary interfaces between the local services. Local services and remote services shall
[2] have a common logical architecture. For distributed processing systems, a circular
interface between each service entity and itself shall [3] be defined as shown in Figure 5-12,
since each service must be able to communicate with remote versions of itself in other
nodes. Remote interfaces to the special avionics processor and the embedded processor
services shall [4] also be defined and specified.

5.2.5 CLASS 5 - DATA SYSTEM SERVICES SOFTWARE-TO-APPLICATIONS
SOFTWARE (LOCAL) DIRECT INTERFACE REQUIREMENTS

DSS software to apphcanons software mterfaces shall [1] be deﬁned as shown in Figure 5-13.
This is the direct interface within a processing element between the application software
and the DSS software (language bindings/specification) to allow provision of needed
services. Since Classes 1 to 4 isolated the hardware and software services in all the
processors, Class 5 shall [2] provide the interface capability for services in any processor to
interact with an application executing in the processor. Class 5 interfaces shall [3] meet
derived requirements based on the need of an application to support users in a multi-

processing environment.

5.2.5.1 Class 5 Error Processing

Error processing on data transmissions across the class 5 interface shall [1] not be
allowed. Transfer of error processing results over the class 5 interface to Onboard
Health Management processing shall [2] be allowed.

SIDIAIAG J0UWIY 10 JIYI() 0 SNIAIIS SSAS "TI-S an3iq

SPIS edelielu]
eonueo \ weorosnusda / sanonuos]
uopnoaxX3y spis eoepeiyy UONINJSX3 SPIS eoejIe|
d3 NSOI-03-AHSdVYS dvs WS13IN-NS1IN-AYS

I

@ spis evepely| waisAg .
SOI-SO-AHSdVD ,
L JaBeuepy NGUNLRISA(Q soneimwansavo L
S9JIAIDS lafeuepy
Spis edepely|
eled WSOHNSLIN-AHSAVO SIIIAIBS
\1ndino/indu WIOM]ISN

spis ooatm_.:_
WSAS-WSOI-FAHSJVD

SPIS edepieu|
WSOI-NEa-AHSdVD

A spiS edepe]
spis eoepeqy; [SAWSLIN-AUSAVO

SO-NSA-AHUSdVD

SPiS eoepelu)
SO-WEA-AUSAVD

SPIS edelau| S$PIS edelOU|
WSL3N-WEQ-AYSdVDO wool-Nsa-AHSdVD

-— m mm—-—.- m Y IS 00.2.3-:. .- m mm : NE
N wsawaa-ausavo N 1015 £ S
\oseg ejeq N e1eq
SPIS 00BJOIU] nusdd

SPIS edeeu|

WEa-WEa-AUSdVD ™ WSA-NSA-AHSdVYO

5-23

sadejIalu] 10311 d18M)0S suoiedddy-03-a1em)JoS WIRISAS G ssel) *€1- Indig

JDANNODHALNI WALSAS

e~ T _

LOINNOOYILNI TvO0T

JHVM
-advH
D 1S30IAHES
MS
sooeo| sooepelu| umoys 10N
ddV-AHSdVD ddV-AHSdVD suoleo)|ddy peseg-dy's pue 43

'sksqng
jouod aremyos suojjedjiddy peseg Josjuo)
OND peojAed

[ojuo) /wasAsqng
8 Aejdsig Josu0)
maly suonesado
_ 9dedg

sAsqns
[onuo) losjuod

_o._EoU ._Qso..._ w._m
130 _/ 99| i

paepuels aoepatul = ()

suonediddy 0} SoJIAIeS

5-24

5.2.5.2 Services to Applications Interfaces

The DSS to applications interfaces shall [1] be defined as shown in Figure 5-14. The
applicable interfaces are shown in black and labeled, and everything else has been grayed
out to highlight items of interest. There shall [2] be a standard access interface to the data
system services, which is a function of the service and independent of any one application.
The Input/Output Data Services manager shall [3] be capable of providing access to other

irectly to the applicati
shall [4] be capable

services as we.

prov1dmg the source of data. The

data system manag
subsystems.

5.2.6 CLASS 6 APPLICATIONS so

ARE-TO APPLICATIONS SOFTWARE

(LOGICAL) INTERFACE REQUIREMENTS

Applications software to applications software interfaces shall [1] be defined as shown in

Flgure 5-15. This shall [2] be a peer to peer information exchange and coordination interface

between apphcatmn software modules. Appwcatxons' shall [3] not communicate directly. All

apphcatxon to a15p11catlon software communication shall [4] be implemented by use of
system services software. All communication shall [5] be through a Class 5 standard -
interface to System Services to provide the direct communications path between
applications. This interface may be between applications within a processing element or
between applications in separate processing Veleimer{té.' The grayed out parts of the figure
represent the material covered in Classes 1 to 5, the black parts of the figure are the new
interface definitions added in Class 6. Since Classes 1 to 5 isolated the hardware, software
services and applications in any processor, Class 6 shall [6] provide the interface capability
for an application in any processor to interact with another apphcatlon executing in any
processor. Class 6 interfaces shall [7] meet user and derived requirements based on the need

of multiple applications to support users in a multi-processing environment.

5.2.6.1 Class 6 Error Processing

Error processing on data transmissions across the class 6 interface shall [1] not be allowed.
Transfer of data between Onboard Health Management entities shall [2] be allowed.

5.2.6.2 Application A i Intert

Applications to Applications interfaces may also include interfaces between applications in
two different systems or vehicles. System A applications software to system B applications

5-25

labeuepy
SAJINISS
eleq
indino/anduj

SPIS adeualul SPIS doepdu)|
WSOIFddV-AHSdVD WSsA-ddV-AHSdYD

__asemyos uopeoyddy >

sapdutexsy

5-26

$90eIa)u] [d1307] rem)yos suonediiddy-0j-aaemiyos suoneniddy :9 sse) ‘ST-s dandiy

piepuels avepa) = (@)

LOINNCOUIINI ViILSAS

LDANHODMIINITYSOT

JHVYM
ddvH

, 1S30IAH3S
epmoseomemonca: T rryyrom—— Ses . ;m

T
jofuo)
OND

joJjuo))
» Aejdsiq
mal1n

Ew!trm., w:ozmo__an< vwmmm.n_<0

WajsAsqgn

jo}u0)
suopesado
aoedg

w>mn:w_
jo4uo0)

Si9jsuel] ejeq el

-

5-27

software interfaces shall [1] be defined as shown in Figure 5-16. The grayed out parts of the

figure represent the material covered in Classes 1 to 6 (within one system), the black parts of | =
the figure are the unique interfaces that are provided by Class 6 for inter-system interfacing.

Since Classes 1 to 5 isolated the hardware, software services and applications in any system,

Class 6 shall [2] provide the interface capability for an application in one system to interact

with an application executing in another system. Class 6 interfaces shall [3] meet user and

derived requirements based on the need of multiple applications to support users in a

multi-system environment. Class 6 interfaces shall [4] be defined to meet the overall

mission and operational control requirements across multiple facilities and vehicles.

TA SYSTE ERVI RCHITECTURAL REC

The DSS architecture shall [1] include capabilities drawn from up to five categories of
services: the Data System Manager, Data Base Manager, Input/Output Data Services
Manager, Operating System, and Network Services Manager, as shown in Figure 5-17.
Interfaces from external entities to the DSS shall [2] be as shown. Control of the data system
resources shall [3] flow through the Data System Manager (DSM) to insure coordination of
the system configuration at all points for reliability. Data shall [4] flow through the
Input/Output Data Services Manager (IOSM). Crew display and control (D&C) shall [5] be
capable of operating through at least the IOSM and the DSM to insure at least one normal
and one alternative path for direct low level system command and control by the crew.
Similarly, operations control shall [6] be capable of operating through at least the IOSM and
the DSM to insure at least one normal and one alternative path for direct low level system

:!

‘

control by the ground or mission control. Access by applications will be as required by the

system requirements documents.

The DSS architecture shall [7] provide options for at least the services as organized and
shown in Figure 5-18. Implementation requirements for such services will depend on the

system requirements documents.

5.3.1 INPUT/OUTPUT DATA SERVICES MANAGEMENT

The Input/Output Data Services Manager shall [1] provide all interface to the system users
for data processing and data communication services. Services to be provided to the users
shall [2] be derived directly from user requirements. The input/output data services
management shall [3] include at least requirements for standard services data acquisition,

(W“

standard services data distribution and reports generation.

5-28

S30eJIJU] [EIIF07] IBM)JOS g UIRISAG-0)-2.1BM}JOS Y WAISAS 9 Ssef)) ‘9T-§ dIndig

oua)
[04}U0D) UOISSIW -
wasAsgnsg jonuo0)

suopesado . | nous seonyaua
adedg

5-29

g SIo1uaA piepue)s aoepaju) = (1) V SI9IUsA

SI9jsuel] ejeq Jeoibo] suonesijddy WajSAG-01-WAISAS

SIUIWI[F IBJIIUJ [BINAYILY SDIAIIG WINSAS eIe(*LI-S 341y

Jsn
aulyoen
aleg
(waysAsgng
|ouo)
suoljesado
aoedg Buipnjou)
suonedddy (wayshsqng
jonuo)
m_o._y w:o_nm._&ﬂo
—n.308dS Buipnjoup)
suoljedjddy
sjosuo)
o%a 21eq
Mal)
ejeqg
0%d
Mmaln

eleq

$10109}} 3 B SI0SUIS

5-30

SIUIUIA[T IAJIS DeJINU] "T-S 24n31g

HITIOHLNOD
NOILLVIOOSSY XHOMLIN

eel] uoljewsoju] Aiojoelq -
eseg uojeuuoju| Aioyelq -
Wweby weisAg Lioeuq -
1ueby Jesn Aloloenqg -
HITIOHLNOD 3DIAHIS
AHOLO3HIAQ YHOMLIN

HOLvH3IdO ILON3H

SNIBIG BoUBWIOLSd YOMIBN -
1B Alunodeg spomieN -
wewebeuepy 1ake yoelg -
uoljoele(] jine4 YoMIeN -
Aojoau snieig JomieN -
10JeUIPJO0D YIOMION -
HIOVNVIA HHOMLIN

»ES -

Wewebeuepy enend) YOMIEN -
lejjonuo) yoes yomeN -
uonesyiten

PURLILLIOYD YOMIBN
H3ITIOHINOD

JOIAHIS HHOMLIN

H3IOVNVN
S30IAH3S
AHOMI3AN

(e101s sseW
uj) sealydle punoly) -
Buiddew
o]l [eaJ/jlenuip -
siejsuel|
BpON [eulelx3 -
H3ITTIOYINOD
INJWIOVYNYIN
ANV SS300V
"HAASNVYHL 34

{1 Buipiooey -
(epoN yoe3
u|) siejsuel] epoN
welsAg |jewsiu) -
H3ITTOHLINOD
FOIAHIS HIASNVYHL
374 a31lnaidisia

(s401s SSRW
u) Juswebeuepy
eoInosey -
seoneg
84 peinquisiq -
seJjAes
eji4 painjonig -
NS B)l feiuenbeg -

s0o|AIeg
JOSE9201d pJepueis-uoN -«

uoRNQUISK BWI| UoISIDeld -

1se] jles

pue uoneziieniu| 314H/SO -
Wewebeuepy sng jeuseju -

UOIEDIUMLLLIO)
$5600.id-8U]| -

16 wesBoid-RINN vay -

suoljediunwiuo)

9 |04JU0D dse |
suoleo||ddy swi-jeey -

SNOISN3LX3 31H/SO -

eluuogAug Jueldwo)
XISOd ewii-reey yqy -
usLIUOIAUT

PeXIN YAV-UON/VQY -
uoddng Jejidwo) vay -

3id vav -

BN Anoesg ¢ AoeAud -
seoimes Annn -
wewsebeuepy NdoD -
16y Aowepy -
ewebeuey O] -

16\ uoneinByuon
pue uoiezifenui -

HITIOHINOD jonuo) g 16| sseooud -

30IAH3S 3114 - TYNUIN SO -
H3IOVYNVIN W31SAS
3asva viva ODNILLYH3dO

eseq eleq lioisiH ejepdny -
uoeinbyuosey jenuey -
uojieinBijuosey olewoiny
eleq einje4

pue snjeis yljeeH $s820id -

eleq einjie4

pue snigig yjjee 1084j0p -

HITTOHLINOD HIQd ONY
SNLVLS ‘HLTV3H Wsa -

sisenbey
peojey pue [eniuj ssesold
©1em}jog ejeujwie |
MS ezijepu) pue peoq -
pepeo eg 01 MS Anuep| -
DIANOD3H ANV dNLYVILS
“LINI W3LSAS Viva -

Bunwy} eziuonoudsey -

Bujwi) erepdn -

Byuoosy Bujwi] jenuepy -

uonenBijuosey

Bujwij onewolny -

edeg Buwi | Jojuoy -

H3TTOHINOD
JOIAH3S ONINLL -

Byuon wejsAg ueluEel -
MS ® MH einbyuodey -
16y ebueyn
sejqe) MS pepeojdn -
HIOVNVNN
NOLLVHNOIINOD -

sindinQ -
swio4 -
sejqe] -
HOLVHINTD
S14Od3y -

Buisseoold AoisiH -
Buisseooid Aneweje] -
Bursseooid
Bujusepp % uonnen
€Q 01) peey pue

Hun ereq peinqusiqg -

NOLLNgIH1SIa

V.1va s30IAH3S
LNdLNO/LNdNI -

Jebeuepy reuinop -
(8Q o) eluMm

B qun eleQ painquisiq -
seonieg Buisseosold

-8.d Josueg -

indinoAnduy

10108))3 pue Josueg
seolnleg sng eleq -
HITIOHINOD
NOLLISINDIY
V1iva S3DIAH3S

1NdLNO/LNdNI

HIOVNVIN
W3L1SAS vilva

HIOVNVYN
S3JIAH3S Yiva
1Nd1NO/LNdNI

~—

5-31

5.3.2 DATA SYSTEM MANAGEMENT

The Data System Manager shall [1] provide the housekeeping and control services for the
SDSS. Command and control service requirements shall [2] be derived directly from user
needs. Data system management shall [3] include at least requirements for configuration
management, timing service control, initialization startup and reconfiguration, error
processing, error recovery, fault treatment and reporting of health status to onboard health
management. The DSM shall [4] execute under the Operating System. There is a command
and control interface to the crew and to the SOCS. Command and control service

requirements are derived directly from user needs.

5.3.3 NETWORK SERVICES MANAGEMENT

The NSM shall [1] provide for peer-to-peer communication between applications on
distributed processing elements communicating over the SDSS system interconnect which
require use of network communications between applications in distributed processing
environments. The network services management shall [2] include at least requirements
for network services, network management, remote operation, network directory service,

and network association control.

5.3.4 DATA BASE MANAGEMENT

This entity shall [1] provide services to the SDSS subsystems and application users for the
management of structured data files, file transfers and file redundancy management. The
data base management shall [2] include at least requirements for file services, distributed file
transfer services, file transfer access and management, and node directory. All communi-
cation with and requests for services from the DBM shall [3] be through the IOSM.

5.3.5 OPERATING SYSTEM

The OS shall [1] provide the layer of SDSS software that isolates other services as well as
application software from the data processing hardware element. The OS shall [2] provide
management, allocation, and deallocation of the processor, memory, timing and I/0

processing resources for application and service software and hardware that is independent
of the mission. The operating system shall [3] offer at least open standard OS services such

as an OS kernel and/or a run time environment (RTE) and OS/RTE extensions. Resource

allocation and control that is mission dependent shall [4] be treated as an application.

A bare machine user may interface directly with the Run Time Environment (RTE).

5-32

6. NOTES

(This section contains information that may be helpful, but is not mandatory)

6.1 AVIONICS SYSTEM NOTES

6.1.1 AVIONICS GENERAL

Avionics provide for information acquisition, transmission, and storage of analog or digital
signals and include the sensors, intra-platform communications, processing hardware,
software and subsystems, data storage, human-machine interface subsystems, and response

actuator controls used in the vehicle.

il

6.1.2 MODES

Modes govern how the system operates in response to human commands. Mission ready

~ mode means the system has all elements working as specified or "green”. Operationally

. ready mode means the system can functlon but can | not accomphsh a desired nussmn, for
1nstance whén an alrcraft is conﬁgured for a reconnalssance mission but is needed for a

| bombing mission, or when a spacecraft is can be launched but has no payload installed.
Degraded mode means the system is "soft broke", but can perform a subset of its required
functions. An example is when an aircraft radio is not working so not all functions can be
performed but the aircraft can still fly and drop bombs. Red-tagged mode means that the
system cannot operate at all, for instance when an aircraft fuel system is polluted or a wheel

is broken on the ground.

i
HiTI ‘
|
|

:,61 3 ARCHITECTURE INTERFACE MODEL

The Archltecture Interface Model 1s ‘summarized mﬁgures 5-3 and 6 1. %Fxgurefl5-3

presented the architecture reference model and | Figure 6-1 presents an overlay of the
reference model on the generic avionics structure assembled in this standard. Both figures
also show the relationships of this architecture interface model to the POSIX interfaces.

6.2 REQUIREMENTS NOTE
6.2.1 DATA PROCESSING SUBSYSTEM

Data processing subsystem requirements are inherited onto lower level subsystems. A data
processing subsystem is setup and controlled by a runtime operating system.

6-1

"

I3POJAl 30EJIAIU] AINJIYIIY SHUOIAY DLIdUAL) *T-9 dndy]

19PON 0'€001d

Juswiuoiaug

|9POIN 3deJI01U] BOUIBIY YVODS

P

1oeuuod
-10)uj
weysA

1P8UUOD
-18ju]
(2D

e1eMpIBH 10856001
$DJUOJAY (BlBURY)

J0§S090.d
[eubjs ‘6o

Josueg
pbyjjeu; ‘6o

edujieiul]| ecepeiu

-0 [-8l
122017 |

elempieH J0$5820.d
$|UOIAY (B40USY)

PaUUOoD || 108UU0D

)

1o0UU0D
-19juj
()

eJempiey
40880001d

[LLEITNTS

o

803|108

Bujssesosy
peziierded

soopmy. : umv.mon:_w
(dvs)
10SS3J0.1d ._omMn_meu._Q
SJOIUOJAY
jejoads ﬂovuwnEm

slejpusy
SIeMpIeH

nonuoad

uopnoexy

uMoys
JON suoneoyddy
peseg-dvsS pue 43

6-2

6.2.2 INTERSYSTEM APPLICATIONS INTERFACE
Intersystem applications interface requirements address logical requirements of the user

across the interface.

6.2.3 CONTROL SUBSYSTEM

Controrl; subsy s}emrg Juirements are inherited onto lower level control sﬁbsystéihs.

6.2.4 MODULAR ARCHITECTURE

Modular architecture requirements changes should not cause disproportional changes in
the design, and design changes should be limited to one or a few design modules.
Requirements changes should not affect the architecture of the system, unless the change is

one for the architecture directly.

6.2.5 DIRECT INTERFACE

Direct interface requirements are normally a design issue unless the physical
implementation has implications for the logical use or need for data, only then should the
direct implementation be specified as a requirement. For instance, a service such as a
Reports Generator getting data from a Data Base Manager might not need to know the inter-
network addressing of the Data Base Manager, but the Network Manager providing the data
would need to know the routing requirements of the hardware services.

6.3 REQUIREMENTS CHARACTERISTICS DESIRED
6.3.1 ROBUSTNESS

Robustness must enable a system to operate in conditions not originally foreseen by the
specification without catastrophic failures, without exhibiting behavior that disturbs the rest
of the system, by failing (if necessary) in a "graceful” manner by terminating cleanly and

safely.
6.3.2 SYSTEM SERVICES SOFTWARE

System services software must have common and standardized interfaces serving many
applications.

6-3

6.3.3 SERVICE FUNCTIONS

Service functions are usually widely replicated in support of many control or data
processing subsystems. This wide replication of functionality is a key determining
characteristic in defining an individual process as a service in this methodology. Services
are critical to system operation, not to mission or vehicle operation per se. An example of a
service function is a Report Generator since many applications and control subsystems
must generate reports; here, they call on the report generator service which knows how to
look up the table defining the applications/control report, how to format the format for
completion, how to find the data to fill the report fields with, and how to route the report
for distribution based on a predefined distribution list. High level standard services are
services such as timing, distributed data handling and fault tolerance, which may have
different needs when viewed as a multi-processing system than when considered as a single

processor system.

6.3.4 TAILORING

Tailoring of the SGOAA may result in subsets of requirements applicable to a mission or
program, but the resulting system must retain architectural interface compatibility.

6.3.5 SYSTEM CHARACTERISTICS

System characteristics that determine the nature and requirements for a system hardware
architecture are the number of processors, their type and topology, the speed and size of
shared memory available, the local memory of each, the bandwidth and access to
communications media, and the interfaces available for use by people, applications and

platform software services in the hardware.

6.3.6 ONBOARD HEALTH MANAGEMENT

Onboard_health management facilitates tradeoffs between requirements for and design of
reliability, maintainability, error processing, and fault treatment. Compliant architectures
should also facilitate defining requirements for and interactions between health
management, logistics, supportability, and safety management. -

6.4 ARCHITECTURAL CHARACTERISTICS DESIRED
6.4.1 SYSTEM SOFTWARE ARCHITECTURE

A system software architecture must describe the set of system functions performed by the
applications software, and the structure of the platform software services that enable the
applications software to perform their tasks. The functionality described by the system
software architecture are the tasks which are required of the system to meet the needs of

operational users.

6.4.2 APPLICATION PLATFORM

The application platform provides services at its interfaces that, as much as possible make
the specific characteristics of the platform transparent to the application.

6.4.3 APPLICATION PROGRAM INTERFACE

The API is primarily in support of application portability, but system and application
interoperability are also supported by the communications APL

6.4.4 ARCHITECTURE LOCATION INDEPENDENCE

Architecture location independence is desirable, meaning an architecture compliant with
this standard should be independent of whether control functions are implemented

onboard the vehicle or offboard the vehicle (e.g., in support control facilities).

6.4.5 FAULT TOLERANCE TRANSPARENCY

Fault tolerance transparency is desirable, meaning applications in an architecture compliant
with this standard should not require knowledge of the redundancy of its platform or its

direct interfaces.

6.4.6 ADAPTABLE REDUNDANCY

Adaptable redundancy is desirable, meaning that an architecture compliant with this
standard should allow more than one configuration of the architecture to provide different
levels of redundancy. This allows another level of commonality beyond that of hardware

and software modules.

65

6.5 DIRECT AND LOGICAL INTERFACE NOTES
6.5.1 CLASS 2 DIRECT INTERFACE =4

The Class 2 Hardware-to-System Software Direct Interface drivers are (obviously) hardware
dependent, but this enables the architecture to begin partitioning out of the hardware
dependencies, which is a key in providing for technology upgradability in the future.

6.5.2 HEALTH MANAGEMENT INTERFACE

Note that interface drivers specifically defined for health monitoring are not required. Each
required driver will collect all data associated with its hardware element and format it for
conveyance to the appropriate operating system interfaces; if health monitoring capabilities
have been implemented in the associated hardware, then this data will be collected along
with all other data.

6.5.3 CLASS 4 LOGICAL INTERFACES

Class 4 System Software-to-System Software Logical Interfaces provide the interface

capability for services in one processor to interact with services in the same or another

processor. They are the heart of multi-processor capability needed in modern space avionics NI
systems. EP services can interact with SAP and GAP services; SAP services can interact with

GAP services; GAP services can interact with EP and SAP services and other GAP services.

These interfaces are logical interfaces because the service originating data is interacting with

the service that will use the data (i.e., that will transform the data into another form for a

purpose).

6.5.4 CLASS 5 DIRECT INTERFACES

Class 5 System Software-to-Applications Software (Local) Direct Interfaces provide the
capability for services in any processor to interact with an application executing in the
processor. Applications can operate in any GAP, with potential partitioning of an
application across multiple GAPs. Similarly, applications can operate in any SAP or any EP.
These Class 5 interfaces are direct interfaces because the applications software code is

interacting with the service software code.

6.5.5 CLASS 6 LOGICAL INTERFACES

The Class 6 Applications Software-to-Applications Software (Logical) Interfaces are logical
interfaces because the application originating data is not directly interacting with
applications that will use the data. Class 6 interfaces are also the interface for exchange of
information between the space avionics system and another avionics system for overall
command and control. This interface is at the mission level and_ may be an information

exchange between the ground or between separate space vehicles.

Class 6 also provides the basic multi-system capability to meet multiple actual user
requirements in multiple systems, facilities or vehicles. Applications can operate in any
system's processor (e.g., the Mission Control Center GAP or workstation) to cooperate with
applications in another system’s processor (e.g., the Lunar Transfer Vehicle GAP).

6.6 IMPLEMENTATION CHARACTERISTICS

In implementation, tailoring of the generic architecture to the unique requirements of the
mission and system application is critical to successful use of this architecture. Profiles need
to be applied. Such usage must recognize the scaleability, recursiveness and interaction
between target and development environments in order to take full advantage of the utility

of this architecture.

6.6.1 ARCHITECTURE SCALEABILITY

The generic system architecture model can be scaled to apply to the size and definition of
system being used in any type of hardware/ software processing system. It is equally
applicable to systems at the vehicle level, rack or black box level, module or board level, or
chip level, as shown in Figure 6-2. In this figure, examples of a system interconnect, local
interconnect and internal interconnect change as the scale of system application changes.
The use of embedded processor, general avionics processor and special avionics processor
also changes. While only intended as an example, this figure makes clear that when two
more engineers are applying the this architecture to a specific project, mission or system,
great care must be taken to insure all discussions reference the same level of "system”.

6.6.2 ARCHITECTURE RECURSIVENESS

The generic architecture interface model can be recursively applied to different usages of
layers (i.e., hardware, drivers, OS, etc.) between the SGOAA classes in the architecture. As

67

91qBa[EIS ST PPOI 3NPINYIIY WIJSAS ILIAUID) ay], *7-9 dndy

(4D v Ut seey usemieq siing “B'e)

1IINNODHIINI YOO

(dIuo e uj seary

UM sitiag “B'e) rzitcesen e esannne -
40INNOOHIINI _ | Faaad s Bl Cmoerer L
IVNUIINL DIEMPABLE
o aIBMpIeH LR, :
‘m.w.“_n...vonam.oaam,z 880JAl0G u.w...ue
P * :.Sim Suowu.% :
: Eﬁtﬁom SRS
nuen__m_umnmnv S A ,
soluopaY (0100ds ﬁl a:oaco._an«\ 7&.@
asoding pleven
A.»n‘ﬂrt A Ao) lt(
E—».»O ¥ Uj oy O:_-Ooen S2|UOJAY [RIOULP:

 duov o sey
Buissed

(oun diys “e)
LOINNCIYILNI NILEAS

E

)
® U Syjed “Be)

o o Buissesauy Y-
S3{UOIAY [8|dedg

(oury diyo “Be)
LOINNODHIINI YO0

a:ozao._ane. o
430&:& ?.acaug

(INA “Be)

- LOSNNODHILNI WIUEAS

5

_weishisdiyp]

| ¢

weysig pieogjejnpoly }

QwA “Be)
LOINNODMILNG VD01

(squr1 diyp “B-e)
LD3INNOOHIIN

=] n:o_.uo__gae. m.!.!d
c»c&:m ?.wco?.»/

SIRIONAY [idedg

S et i

.....8: E_.S...e..
20438} /108Ues

(€991-016- W “B's)

1D3NNODHAINI NILSAS

§

(3MA “0'e)

L woutt Bujsssaoig Y-
SORIOIAY (ejoedg

(£391-016- 1M “B'e)

LIINNODHIINI 1¥207)

ue.w_y._om rs

4 bll’v
\ wras

3 “suopesyddy ”.i..
nmaa._sn ::o:ocuu.

» Avevig)
,,,,, ~

fiossecaid vrasSEw. 34

(ag4 “te)

LOINNODHILNI WALEAS

{ wejsis yoey/xog J—

{_wionieid ejd1yep -

shown in Figure 6-3, from an external view, hardware such as an ethernet board is a
monolithic block. However, from within the block, ethernet "hardware” may consist of a
microcosm of the entire interface model with board drivers, a OS kernel/RTE, some
ethernet services and some ethernet processing applications all resident on the board. All
of these microcosmic elements are transparent to an outside user passing through the

interface.

6.6.3 ARCHITECTURE TARGET DEVELOPMENT

The architecture applies equally to any hardware/software processing system. In the
example shown in Figure 6-4, it applies to a development environment, where
development software such as a compiler is an application, which must have knowledge of
the host, the target and the programming language being used. Within the development
environment, there are services, OS elements and drivers. The target code is operated on by
the development environment and transferred upon completion to the target hardware to
execute. From the view of the target environment, this development environment is

transparent.

6.7 TERMINOLOGY NOTES

In the space systems avionics arena, a data system is terminology used to refer to the set of
operating system elements and supplementary or common services controlling processing
resources in a host platform. This is similar to and includes the terminology system
executive and distributed executive as used in PAVE PILLAR, global executive as used in
parts of the F-22 Program, or common system services (e.g., an operating system) as used
often in POSIX and other parts of the aircraft avionics arena. This standard differentiates
between data system and data system services, in that a data system includes data system
services, command processing, and other common capabilities (see Space Data System and
Space Data System Services definitions in Section 3.1).

6-9

D

AAISINIIY SI [PPOJA 308JIAIUT 2INPIAPYILY YL ‘€9 a3y

uojsuaix3 SO/ AH

SaJIAIOS
wasAs bunesadg | -

S9J|AI3S
walsAg Bujjesado

[Y

A

O, ©®

®

S90JAI9S WalSAS eleq [——» saojnseg walsAS Bleg @

\

® O

® Y
suopesddy

¢ . suopjedjddy

6-10

sJudwuoLIAUY JudwrdopPAd(JSOH pue 193.1e], 03 saliddy [PPoJA adejIajug Ay, -9 a4nSiy

\ Adv alempiey
(ss9npQ)
uoisuaixa SO/MH

®

SOJ|AIOS WAISAS
—> Bunesado

@@0 r

< > SAIIAIBS
@ walsAs ejeq @

G
/ <y > [_suoneondd k

juswuodiaug 10bie

JuswiuoJjAug
wawdojaaag

weisis Bupssedo

\—

epo) ebie)

_/

Juswuoiaug yuswdojanag

s
’

6-11

6.8 PURPOSE OF PROFILES
As described in [PSS;i)(»91];';;roﬁles d_efine ‘tvhe cérﬁginafiohé of- Bas; standarci; énrd profiles :
(i.e., templates) for the purpose of:

¢ Identifying the baseline standards, together with appropriate classes, subsets, options,

and parameters, that are necessary to at least accomplish interoperability, portability

and other identified capabilities.

* Providing a system of referencing the various uses of baseline standards that is

meaningful to both users and suppliers

* Enhancing the availability for procurement of consistent implementations of

functionally defined groups of baseline standards that are expected to be the major

components of real applications systems

¢ Promoting uniformity in the development of conformance tests for systems that

implement the functions associated with the profiles

9 BIBLI

RAPHY EFUL D

These are publications which offer insight into generic, open architectures and provide

supplemental explanatory material for this standard.

[SP-M-001]

[SSP 30261]

[MDC H4187]

[MDC H4188]

[MDC H4189]

"Contract End Item Specification for Data Management System, Vol. 1: Data
Management System Requirements”, Rev. E, (NASA Approval Pending),
Feb. 14, 1992. Reference Document #1.

Section 3 Revision D "Data Management System Architecture Control
Document Section 3: Data Management System" with Revisions D1 and D2,
September, 1991.

" Software Requirements Specification for the Data Management System
Data Storage and Retrieval", SSFP DR 5Y-34.11, Contract No. 87916006, IBM,
October 25,1991.

" Software Requirements Specification for the Data Management System
Network Operating System”, SSFP DR $Y-34.11, Contract No. 87916006, IBM,
October 25,1991. o

" Software Req'uirements'Specificat'ion for the Data Mahégement System
Operating System/Ada Run time Environment”, SSFP DR SY-34.11, Contract
No. 87916006, IBM, October 25,1991.

6-12

[MDC H4190}

[MDC H4191]

[MDC H4542]

[IBM101]

[IBM401]

[IBM403]

[IBM404]

[PRU90]

[WRA91]

[SA91]

" Software Requirements Specification for the Data Management System
Management”, SSFP DR SY-34.11, Contract No. 87916006, IBM, October
25,1991.

" Software Requirements Specification for the Data Management System
Standard Services", SSFP DR SY-34.11, Contract No. 87916006, IBM, October

25,1991.

"User's Guide (Software) for DMS Initial Release ", SSFP DR S5Y-40.1],
Contract No. 87916006, MDSSC, September 23, 1991. .

"Critical Item Development Specification for Mass Storage Unit", SSFP DR
SY-06.21, Contract No. 87916006, 153A101-PTIC, IBM, Oct. 9, 1992.

"Critical Item Development Specification for the Standard Data Processor”,
SSFP DR SY-06.21, Contract No. 87916006, 152A401-PT1D, IBM, Oct. 9, 1992.

"Critical Item Development Specification for the Embedded Data Processor”,
SSFP DR SY-06.21, Contract No. 87916006, 152A403-PT1D, IBM, Oct. 9, 1992.

"Critical Item Development Specification for the Network Interface
Adapter", SSFP DR 5Y-06.2], Contract No. 87916006, 152A404-PT1D, IBM, Oct.
9,1992.

Pruett, D., "Avionics Software Open System Environment Reference
Model", JSC, March 1990.

Wray, R. B., "Requirements Analysis Notebook for the Flight Data Systems
Definition in the Real-time Systems Engineering Laboratory (RSEL)," Job
Order 60-430, Contract NAS9-17900 for the JSC, LESC-29702, JSC CR-185698,
December 1991.

NASA Open System Architecture Study, Lockheed Sanders, August 27, 1991

6-13

DISTRIBUTION LIST FOR LESC-30354-B
SGOAA STANDARD SPECIFICATION- CONTINUED

LASC, 86 S. COBB ST.,MARRIETTA, GA. 30063
RICK HARWELL, D/73-D2, ZONE 0685

JOHN WEAVER, D/73-D1, ZONE 0685

COX, JIM, D/73-MA ZONE 0081

REED, MIKE, D/73-MA, ZONE 0081

HUDSON, ROCKY, D/73-D2, ZONE 0685

LMSC, 1111 LOCKHEED WAY, SUNNYVALE, CA. 94088-3504
CHARLES TADJERAN, ORG. 62-31, BLDG 150

ROY PETIS, ORG. 73-12, BLDG 564

RANDY FLEMING, ORG. 73-12, BLDG 564

JOHN McMORRIS, ORG. 81-90, BLDG 157

DUWAYNE DICKSON, ORG. 80-06, BLDG 154

F. L. (FRED) LORY, ORG. 68-15, BLDG 104

MERLIN DORFMAN, ORG. 62-80, BLDG 563

LM RD&D), 3251 HANOVER STREET, PALO ALTO, CA 94303-1191
BILL GUYTON, ORG. 92-20, BLDG 254E '

RAY MUZZY, ORG. 90-21, BLDG. 254E

STEVE SHERMAN, ORG. 96-10, BLDG 254E

TOM ARKWRIGHT, ORG. 96-10, BLDG 254 E

LOCKHEED-SANDERS, 95 CANAL ST. NASHUA, NH 03061
RAY GARBOS (NAMS5D-5002) JEFF E. SMITH (PTP2-B002)
JOHN MILLER (NCA 09-1106) DUNCAN MOORE (MER 24)
DAVE AIBEL WALT ZANDI

LADC, P. O. BOX 250, SUNLAND, CA. 91041
ALEX LOEWENTHAL, DEPT. 25-14, BLDG 311

LAD, P. O. BOX 17100, AUSTIN, TX. 78744-1016
CURTIS WELLS, ORG. T2-10, BLDG 30F

LOCKHEED CORP, 4500 PARK GRANADA BLVD, CALABASIS, CA 91399-0310

MICHAEL CARROLL
BART KRAWETZ

LAS Ontarlo, P. O. BOX 33, ONTARIO, CA. 91761-0033
C. R, (BOB) FENTON

LFWC, P. 0. BOX 748, FORT WORTH, TX 76101
PAUL DANIEL, MAIL ZONE 2640

LSOC, 1100 LOCKHEED WAY, TITUSVILLE, FL 32780
L. J. (LEWIS) BOYD, ORG. 32-40, (Z/LSO-183)
ARTHUR EDWARDS, ORG. 11-42, BLDG. B/DX-D, Z/LSO-284)

DISTRIBUTION LIST FOR LESC-30354-B
SGOAA STANDARD SPECIFICATION- CONTINUED

BOEING CORP, PO BOX 3999, SEATTLE, WA 98124-2499
RICHARD FLANAGAN
AL COSGROVE

COMPUTING DEVICES INTL, 8800 QUEEN AVENUE SOUTH,
BLOOMINGTON, MN 55431

JIM JAMES, M/S BLCSID
DOCK ALLEN, M/S BLCW2S

WESTAR CORP, 6808 ACADEMY PKWY EAST, NE, BLDG C, SUITE 3,
ALBUQUERQUE, NM 87109
CHRIS DE LONG

HG USAF/SCS, 1250 AIR FORCE, PENTAGON, WASHINGTON, D. C. 20330-1250
COL ROBERT HANLON

ROCKWELL INT'L. CORP., 12214 LAKEWOOD BLVD., DOWNEY, CA. 90241
BURTON SMITH, M/S FA20

TRW, HOUSTON, TX 77058
DOUG RUE (NASA MAIL)

EAIRCHILD ,E, 20301 CENTURY BLVD., GERMANTOWN, MD. 20874
JOHN SCHNEIDER, FLIGHT DATA SYSTEMS

E-SYSTEMS, P. O. BOX 12248, ST. PETERSBURG, FL. 33733-2248

JIM BRADY/MS29

E-SYSTEMS, P. O. BOX 660023, DALLAS, TEXAS 75266-0023
TIM SMITH/MC 4-47310

EER SYSTEMS INC., 3027 MARINA BAY DR., SUITE 105,
LEAGUE CITY, TX 77573
RAY HARTENSTEIN

ROCKWELL INTL CORP.-ROCKETDYNE DIV., 6633 CANOGA AVE, P. O. BOX
7922, CANOGA PARK, CA. 91309-7922

ANTHONY THOMPSON, D1055-LB33

RESEARCH ANALYSIS AND MAINTENANCE INC., 512 AUDUBON ST.,
LEAGUE CITY, TX 77573

ROGER EVANS - o .

M&AE, 1200 G. STREET, NW, SUITE 800, WASHINGTON DC, 20005
JOHN KELLER . O

McDONNELL-DOUGLAS CORP., 1801 E. St. ANDREW PLACE, 7
SANDA ANA, CA. 92705

TERRY RASSET/MS A208

(

DISTRIBUTION LIST FOR LESC-30354-B
SGOAA STANDARD SPECIFICATION- CONCLUDED

HUGHES AIRCRAFT, P. O. BOX 92426, LOS ANGELES, CA. 90009-2426
JOHN GRIFFITH, RE/RI/B500

C.S. DRAPER LABS, 555 TECHNOLOGY SQUARE, CAMBRIDGE, MA 02139
J. BARTON DEWOLFE/MS 61

SBS ENGINEERING, 5550 MIDWAY PARK PLACE, NE,
ALBUQUERQUE, NM 87109
MR. DEREK HEAD

NAVM APPLIE IENCE RP, 65 WEST STREET, SUITE C200,
WARMINSTER, PA 18974
MR. DOUG D'AVINO

ASE/ENAS, WRIGHT-PATTERSON AFB, OH 45433
FRED WILSON

MR. MARTIN FREED, (ASC/ENASC), 5565 BARBANNA LANE,
DAYTON, OH 45415

ASC/YFMXT, WRIGHT-PATTERSON AFB, OH 45433
MR. BYRON STEPHENS

AMSEL-RD-CZ-TS-1, FT. MONMOUTH, NJ 07703
DOUG JOHNSON/ACC #66

NAVAL AIR WARFARE CENTER, AIRCRAFT DIVISION,
WARMINSTER, PA 18974-0591

RICHARD J. PARISEAU/CODE 102A
RICHARD S. MEJZAK/CODE 2021

TEXAS INSTRUMENTS, 6550 CHASE OAKS BLVD, PO BOX 869305,
PLANO, TX 75086
DR. CHUCK ROARK/MS 8481

HONEYWELL INC, 3660 TECHNOLOGY DR, MINNEAPOLIS, MN 55418
MR. RON FRAZZINI

PARAMAX SYSTEMS CORP, PO BOX 64525, ST PAUL, MN 55164-0525
MR. DARYLE HAMLIN/MS U1F15

CTA INC, SUITE 310, 18333 EGRET BAY BLVD, HOUSTON, TX 77058
MR. DAVID COOPER

MITRE CORPORATION, 202 BURLINGTON ROAD, BEDFORD, MA 01730-1420
WILLIAM T. BRANDOM/D-96
JACK SHAY/DIRECTOR OF SYSTEMS DEVELOPMENT

NCOSE TGCC, 1907 BELLMEADE, HOUSTON, TX 77019
ED SMITH

DISTRIBUTION LIST FOR LESC-30354-B
SPACE GENERIC OPEN AVIONICS ARCHITECTURE
(SGOAA) STANDARD SPECIFICATION

NASA
EK111/D. M. PRUETT (10) EG1/D. P. BROWN
PT4/E. M. FRIDGE (5) EG111/K. J. COX
AMES/E. S. CHEVERS (5) JPL/MS 301-235/A. HOOKE
JM-2/S. McDONALD (30) EK3/R. S. DAVIS
EK3/J. BELL (3)
EK3/D. JIH

LESC
C18/J). R. THRASHER C18/G. L. CLOUETTE
C18/E. A. STREET C18/R. B. WRAY (10)
C18/R. E. SCHINDELER C18/M. W. WALRATH
C18/J. STOVALL (10) C18/B. L. DOECKEL
C106/P. G. O'NEIL C18/G. GERCEK
CO7/J. E. MOORE C83/S. J.THOMAS
C29/P. HOPKINS C22/D. CRAVEY
B11/G. J. MOORMAN
C87/M. W. BRADWAY

(FOR SATWG) ,
C18/JEAN FOWLER B16/LESC LIBRARY (2)
(MASTER + 2 COPIES)

LESC. 144 RESEARCH DRIVE, HAMPTON, VA. 23666
RAY WENDL PHIL MARTIN

SAE/ASD, SAE INTERNATIONAL, 400 COMMONWEALTH AVE,
WARRENDALE, PA. 15096
BARBARA ROTH (FILE) RICH VANDAME

MITRE, 1120 NASA ROAD 1, HOUSTON, TX 77058
STEVE BAYER (2)

UHCL, UNIVERSITY OF HOUSTON - CLEAR LAKE, 2700 BAY AREA BLVD. -
BOX 444, HOUSTON, TEXAS 77058
CHARLES HARDWICH

NIST/CSL, FRITZ SCHULTZ, BLDG 225, ROOM B266, GATHISBURG, MD. 20899

ROME LABS/OCTS, GRIFFIS AFB, NY 13441-5700
RICHARD WOOD

C

